Description
Logic interpreter.
README.md
WeberLogic
Logic interpreter and parsing library
Install
cabal update
cabal install WeberLogic
Interpreter
$ ./WeberLogic
Enter Command
> truthTable: a&b+c->~a&b
'a' 'b' 'c' | (((a&b)+c)->(~a&b))
True True True | False
True True False | False
True False True | False
True False False | True
False True True | True
False True False | True
False False True | False
False False False | True
Enter Command
> toNand: a&b->c
(((((a|b)|(a|b))|((a|b)|(a|b)))|(((a|b)|(a|b))|((a|b)|(a|b))))|(c|c))
Enter Command
> toNor: a&b->c
(((((a/a)/(b/b))/((a/a)/(b/b)))/c)/((((a/a)/(b/b))/((a/a)/(b/b)))/c))
Library
The library contains two modules.
WeberLogic.Parser
WeberLogic.Actions
WeberLogic.Parser
The WeberLogic.Parser
provides functions which read stings and return an abstract syntax tree (AST). The AST in implement with a data type called LogicExp
and Letter
.
Data Types
LogicExp
- A recursively defined data type which implements as abstract syntax tree. It provides the following type constructors which function as nodes in the AST:Not
,And
,Or
,Implies
,Iff
,Nand
, andNor
. ThePredicate
type constructor functions as the AST leaves.
> import WeberLogic.Parser > Predicate 'A' [(Variable 'x', Name 'a')] > Not (Predicate 'A' [(Variable 'x', Name 'a')]) > And (Predicate 'A' [(Variable 'x', Name 'a')]) (Predicate 'B' [])
Letter
- This Data Constructor provies two Type constructorsVariable
andName
. They are used in the construction ofPredicate
which requires a list of typeLetter
> import WeberLogic.Parser > Predicate 'A' [(Variable 'x', Name 'a')]
Functions
parseExp
> import WeberLogic.Parser > a = parseExp "Axa" > b = parseExp "~Axa" > c = parseExp "Axa&B"
parseArg
> import WeberLogic.Parser > a = parseExp "|- Axa" > b = parseExp "~Axa, B |- Cax" > c = parseExp "Axa&B, B, C |- Ax->By"
WeberLogic.Actions
The WeberLogic.Actions
modules provides functions which manipulate the LogicExp
AST.
> import WeberLogic.Parser
> import WeberLogic.Actions
> mapM_ putStrLn $ truthTableStr $ readExp "A&B"
'a' 'b' | (a&~b)
True True | False
True False | True
False True | False
False False | False
> toNand $ readExp "A&~B"
((a|(b|b))|(a|(b|b)))
> toNor $ readExp "A&~B"
((a/a)/((b/b)/(b/b)))