MyNixOS website logo
Description

Self-normalizing applicative expressions.

An applicative functor transformer to normalize expressions using (<$>), (<*>), and pure into a linear list of actions. See ApNormalize to get started.

Self-normalizing applicative expressions Hackage pipeline status

Normalize applicative expressions by simplifying intermediate pure and (<$>) and reassociating (<*>).

This works by transforming the underlying applicative functor into one whose operations (pure, (<$>), (<*>)) reassociate themselves by inlining and beta-reduction.

It relies entirely on GHC's simplifier. No rewrite rules, no Template Haskell, no plugins. Only Haskell code with two common extensions: GADTs and RankNTypes.

Example

In the following traversal, one of the actions is pure b, which can be simplified in principle, but only assuming the applicative functor laws. As far as GHC is concerned, pure, (<$>), and (<*>) are completely opaque because f is abstract, so it cannot simplify this expression.

data Example a = Example a Bool [a] (Example a)

traverseE :: Applicative f => (a -> f b) -> Example a -> f (Example b)
traverseE go (Example a b c d) =
  Example
    <$> go a
    <*> pure b
    <*> traverse go c
    <*> traverseE go d
  -- Total: 1 <$>, 3 <*>

Using this library, we can compose actions in a specialized applicative functor Aps f, keeping the code in roughly the same structure.

traverseE :: Applicative f => (a -> f b) -> Example a -> f (Example b)
traverseE go (Example a b c d) =
  Example
    <$>^ go a
    <*>  pure b
    <*>^ traverse go c
    <*>^ traverseE go d
    & lowerAps
  -- Total: 1 <$>, 3 <*>

GHC simplifies that traversal to the following, using only two combinators in total.

traverseE :: Applicative f => (a -> f b) -> Example a -> f (Example b)
traverseE go (Example a b c d) =
  liftA2 (\a' -> Example a' b)
    (go a)
    (traverse go c)
    <*> traverseE go d
  -- Total: 1 liftA2, 1 <*>

For more details see the ApNormalize module.

Related links

The blog post Generic traversals with applicative difference lists gives an overview of the motivation and core data structure of this library.

The same idea can be applied to monoids and monads. They are all applications of Cayley's representation theorem.

  • Endo to normalize (<>) and mempty, in base
  • Codensity to normalize pure and (>>=), in kan-extensions.
Metadata

Version

0.1.0.1

License

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows