Description
A simple library for linear codes (coding theory, error correction)
Description
Please see the README on GitHub at https://github.com/wchresta/linear-code#readme
README.md
linear-code
Library to handle linear codes from coding theory.
The library is designed to carry the most important bits of information in the type system while still keeping the types sane.
This library is based roughly on Introduction to Coding Theory by Yehuda Lindell
Usage example
Working with random codes
> :m + Math.Code.Linear System.Random
> :set -XDataKinds
> c <- randomIO :: IO (LinearCode 7 4 F5)
> c
[7,4]_5-Code
> generatorMatrix c
( 1 0 1 0 0 2 0 )
( 0 2 0 0 1 2 0 )
( 0 1 0 1 0 1 0 )
( 1 0 0 0 0 1 1 )
> e1 :: Vector 4 F5
( 1 0 0 0 )
> v = encode c e1
> v
( 1 0 1 0 0 2 0 )
> 2 ^* e4 :: Vector 7 F3
( 0 0 0 2 0 0 0 )
> vWithError = v + 2 ^* e4
> vWithError
( 1 0 1 2 0 2 0 )
> isCodeword c v
True
> isCodeword c vWithError
False
> decode c vWithError
Just ( 1 0 2 2 2 2 0 )
Notice, the returned vector is NOT the one without error. The reason for this is that a random code most likely does not have a distance >2 which would be needed to correct one error. Let's try with a hamming code
Correcting errors with hamming codes
> c = hamming :: BinaryCode 7 4
> generatorMatrix c
( 1 1 0 1 0 0 0 )
( 1 0 1 0 1 0 0 )
( 0 1 1 0 0 1 0 )
( 1 1 1 0 0 0 1 )
> v = encode c e2
> vWithError = v + e3
> Just v' = decode c vWithError
> v' == v
True