MyNixOS website logo
Description

Linear scan register allocator, formally verified in Coq.

The linearscan library is an implementation -- in Coq, extracted to Haskell -- of a register allocation algorithm developed by Christian Wimmer. It is described in detail in his Masters thesis, which can be found at http://www.christianwimmer.at/Publications/Wimmer04a/Wimmer04a.pdf. A Java implementation of this same algorithm, by that author, is used in Oracle's Graal project. It has also been implemented in C++ by Mozilla.

This version of the algorithm was written and verified in Coq, containing over 231 proved lemmas, at over 10K LOC. It was funded as a research project by BAE Systems (http://www.baesystems.com), to be used in an in-house compiler written in Haskell.

In order for the Coq code to be usable from Haskell, it is first extracted from Coq as a Haskell library, during which many of Coq's fundamental types are mapped directly onto counterparts in the Haskell Prelude.

Note that not every conceivable property of this library has been proven. For some of the lower layers this is true, because the algebraic constraints on these components could be exhaustively described in the context of their use. However, higher-level components represent a great variety of use cases, and not every one of these cases has been proven correct. This represents an ongoing effort, with the hope that proofs will entirely replace the necessity for ad hoc unit testing, and that at some point we can know that any allocation produced by this library must either fail, or be mathematically sound. In the absence of some complete coverage, this version of the library provides an optional, runtime verifier to confirm expectations of correctness, since it is easier to prove the validity of generated data, than of how it was generated.

This library's sole entry point is the function LinearScan.allocate, which takes a list of basic blocks, and a functional characterization of those blocks, and produces a new list, with register allocations applied to their component operations.

Metadata

Version

1.0.0

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows