Split Epimorphisms and Monomorphisms.
Please see the README on GitHub at https://github.com/gvolpe/split-morphism#readme
split-morphism
Experimental package representing Split Epimorphisms and Split Monomorphisms as presented by Rob Norris (@tpolecat) at Scala eXchange 2018.
Further developement (in Scala) can be found in the Gemini Ocs3 repository.
Non-Injective Optics
Standard 2-way optics deal with invertible mappings. Iso a b
says that a
and b
are equal, so round-trips in either direction are identities. Prism a b
says that there is some subset of a
that is equal to b
.
If we loosen the requirement that types be the same size we get a different kind of mapping, where the large type is squeezed into the small type in one direction or the other. An example is Int ⟺ ByteString
by the standard widening/narrowing conversions. Note that the round-trip starting at ByteString
is an identity, but the round-up starting at Int
is merely idempotent: the first round-trip "normalizes" an Int
into ByteString
range and thereafter the round-trip is an identity.
This phenomenon is a thing, called a split monomorphism or a split epimorphism depending on which side is bigger. Note that every Iso
is trivially a split where the idempotent round-trip happens to be an identity.
When we compose a SplitMono
and a SplitEpi
end-to-end in either direction we end up with a situation where neither round-trip is necessarily an identity but both are idempotent. I'm calling this a Wedge
for lack of a better idea. Splits are trivially wedges where one of the idempotent round-trips happens to be an identity.
A Format
is a weaker Prism
where a subset of a
forms a split epi with b
. Every Prism
is a Format
where the split epi happens to be an Iso
; and every SplitEpi
forms a Prism
where the subset of a
is a
itself.
Wedge a b
a ? b
│ Format a b
┌────────┴────────┐ ∃ a ⊂ a | a > b
│ │
│
SplitMono a b SplitEpi a b ─────┤
a < b a > b │
│ │ Prism a b
└────────┬────────┘ ∃ a ⊂ a | a = b
│ │
│
Iso a b ─────────────────┘
a = b
Adapted from the Scala version.
Examples
It is recommended to have qualified import of the modules, otherwise you might have some issues..
Split Epimorphism
ghci> import qualified Control.Lens.SplitEpi as SE
ghci> import Data.Maybe (fromMaybe)
ghci> import Text.Read (readMaybe)
ghci> let epi = SE.SplitEpi (fromMaybe 0 . readMaybe) show :: SE.SplitEpi String Integer
ghci> SE.reverseGet epi 123
"123"
ghci> SE.get epi "foo"
0
ghci> SE.get epi "87"
87
Split Monomorphism
ghci> import qualified Control.Lens.SplitMono as SM
ghci> let mono = SM.SplitMono toInteger fromInteger :: SM.SplitMono Int Integer
ghci> SM.get mono 1234567890123456789
1234567890123456789
ghci> SM.reverseGet mono 1234567890123456789
1234567890123456789
ghci> SM.reverseGet mono 123456789012345678901234
-7269072992350064654
Format
ghci> import qualified Control.Lens.Format as F
ghci> let format = F.Format (\n -> if n > 0 then Just (n `mod` 2 == 0) else Nothing) (\n -> if n then 2 else 1) :: F.Format Int Bool
ghci> F.getMaybe format 0
Nothing
ghci> F.getMaybe format 1
Just False
ghci> F.getMaybe format 2
Just True
ghci> F.getMaybe format 3
Just False
ghci> F.reverseGet format True
2
ghci> F.reverseGet format False
1
Wedge
ghci> import qualified Control.Lens.SplitEpi as SE
ghci> import qualified Control.Lens.SplitMono as SM
ghci> import qualified Control.Lens.SplitMorphism as S
ghci> import qualified Control.Lens.Wedge as W
ghci> let epi = SE.SplitEpi fromInteger toInteger :: SE.SplitEpi Integer Int
ghci> let mono = SM.SplitMono toInteger fromInteger :: SM.SplitMono Int Integer
ghci> let wedge = epi `S.composeSplitEpiMono` mono :: Wedge Integer Integer
ghci> W.get wedge 123
123
ghci> W.reverseGet wedge 123
123
ghci> W.get wedge 123456789123456789000
-5670419392510072312
ghci> W.reverseGet wedge 123456789123456789000
-5670419392510072312
ghci> W.normalizeB wedge 123
123
ghci> W.normalizeA wedge 123
123
Invariant mapping
All the data types exposed by this library, namely SplitEpi
, SplitMono
, Format
and Wedge
, have instances of InvariantFunctor
.
SplitEpi
ghci> import Data.Functor.Invariant
ghci> let epi' = invmap (+1) (+2) epi
ghci> Se.reverseGet epi' 123
"125"
ghci> SE.get epi "foo"
1
ghci> SE.get epi' "87"
88
Format
ghci> import Data.Functor.Invariant
ghci> let format' = invmap not not format
ghci> F.reverseGet format' True
1
ghci> F.reverseGet format' False
2
Conversions from Prism and Iso
A Prism
can be converted into a Format
:
ghci> import Control.Lens
ghci> import qualified Control.Lens.Format as F
ghci> import GHC.Natural
ghci> :{
ghci> | nat :: Prism' Integer Natural
ghci> | nat = prism toInteger $ \ i ->
ghci> | if i < 0
ghci> | then Left i
ghci> | else Right (fromInteger i)
ghci> | :}
ghci> let f = F.fromPrism nat :: Format Integer Natural
An Iso
can be converted into a Format
, SplitEpi
, SplitMono
or Wedge
:
ghci> import Control.Lens
ghci> import qualified Control.Lens.SplitEpi as SE
ghci> import qualified Control.Lens.SplitMono as SM
ghci> let nonIso = non 5 :: Iso' (Maybe Int) Int
ghci> let epi = SE.fromIso nonIso :: SplitEpi (Maybe Int) Int
ghci> let mono = SM.fromIso nonIso :: SplitMono (Maybe Int) Int