MyNixOS website logo
Description

Run external processes, with strong typing of streams.

typed-process

Tests

API level documentation (Haddocks) may be found on Stackage.

This library provides the ability to launch and interact with external processes. It wraps around the process library, and intends to improve upon it by:

  1. Using type variables to represent the standard streams, making them easier to manipulate
  2. Use proper concurrency (e.g., the async library) in place of the weird lazy I/O tricks for such things as consuming output streams
  3. Allow for more complex concurrency by providing STM-based functions
  4. Using binary I/O correctly
  5. Providing a more composable API, designed to be easy to use for both simple and complex use cases

NOTE It's highly recommended that you compile any program using this library with the multi-threaded runtime, usually by adding ghc-options: -threaded to your executable stanza in your cabal or package.yaml file. The single-threaded runtime necessitates some inefficient polling to be used under the surface.

Synopsis

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.IO (hPutStr, hClose)
import System.Process.Typed
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Char8 as L8
import Control.Concurrent.STM (atomically)
import Control.Exception (throwIO)

main :: IO ()
main = do
    -- Run a process, print its exit code
    runProcess "true" >>= print
    runProcess "false" >>= print

    -- Check that the exit code is a success
    runProcess_ "true"
    -- This will throw an exception: runProcess_ "false"

    -- Capture output and error
    (dateOut, dateErr) <- readProcess_ "date"
    print (dateOut, dateErr)

    -- Use shell commands
    (dateOut2, dateErr2) <- readProcess_ "date >&2"
    print (dateOut2, dateErr2)

    -- Interact with a process
    let catConfig = setStdin createPipe
                  $ setStdout byteStringOutput
                  $ proc "cat" ["/etc/hosts", "-", "/etc/group"]
    withProcessWait_ catConfig $ \p -> do
        hPutStr (getStdin p) "\n\nHELLO\n"
        hPutStr (getStdin p) "WORLD\n\n\n"
        hClose (getStdin p)

        atomically (getStdout p) >>= L8.putStr

Types

The two primary types in this package are ProcessConfig and Process. ProcessConfig gives a specification for how to run a process (e.g., the command to run, working directory, environment variables) and how to deal with the three standard streams: input, output, and error. You use one of the functions in this package for launching a process to turn a ProcessConfig into a Process, which represents an actual running system process.

The easiest way to create a ProcessConfig is using the IsString instance and OverloadedStrings. For example, to run the date command, we can do the following. (NOTE: The type signatures used here are simply to spell things out, they are not needed.)

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = do
    let dateConfig :: ProcessConfig () () ()
        dateConfig = proc "date" []
        -- alternatively: `shell "date"` or just "date"

    process <- startProcess dateConfig
    exitCode <- waitExitCode (process :: Process () () ())
    print exitCode

    stopProcess process

This shows the general workflow: use startProcess to launch a Process from a ProcessConfig, interact with it (such as waitExitCode to wait for the process to exit), and then clean up resources with stopProcess. (We'll get to those () () () type parameters in the next section.)

Instead of explicitly dealing with startProcess and stopProcess, it's recommended to instead use withProcessWait, which uses the bracket pattern and is exception safe:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = withProcessWait "date" $ \process -> do
    exitCode <- waitExitCode (process :: Process () () ())
    print exitCode

But this pattern of running a process, waiting for it to exit, and getting its exit code is very common, so it has a helper function of its own:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = do
    exitCode <- runProcess "date"
    print exitCode

We'll discuss some functions which automatically check the exit code below.

Type parameters

Both ProcessConfig and Process take three type parameters: the types of the standard input, output, and error streams for the process. As you saw above, our default is () for each, and our default behavior is to inherit the streams from the parent process. This is why, when you run the previous programs, the date program's output goes directly to your console.

We can override these defaults in a number of ways. Perhaps the easiest is to simply close the stream for the child so it cannot use it at all.

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = do
    let dateConfig :: ProcessConfig () () ()
        dateConfig = setStdin closed
                   $ setStdout closed
                   $ setStderr closed
                     "date"
    exitCode <- runProcess dateConfig
    print exitCode

A few things to note:

  • The type parameter is still (), since there's no data to return. We'll see some more interesting cases later.
  • This process now returns an ExitFailure 1, since it tries to write to a closed stdout file descriptor.

Using proc and shell

Using the OverloadedStrings approach works nicely for some cases, but we'll often want more control over things. There are two smart constructors available: proc takes a command and list of arguments, and shell takes a single string which will be passed directly to the system's shell.

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = do
    -- Command and arguments
    runProcess (proc "cat" ["/etc/hosts"]) >>= print

    -- Shell
    runProcess (shell "cat /etc/hosts >&2 && false") >>= print

The behavior of the OverloadedStrings approach we've used until now is actually based on these two smart constructors. If you provide it a string without any spaces (like "date"), it will use proc without any arguments, e.g. fromString "date" = proc "date" []. If there are any spaces in the string, it will use shell.

EXERCISE: Rewrite the previous example to not use the shell constructor.

Checking the exit code

We've done a lot of printing of exit codes. In many cases, we don't actually want to look at the exit code, but instead just throw an exception if the process failed. Fortunately, we have such an exit-code-checking function.

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = runProcess_ "date"

By adding the _ at the end of runProcess, we're now automatically checking the exit code and throwing an exception if it returns anything but success. Want to see it in action?

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = runProcess_ "false"

Under the surface, this function is using the checkExitCode function. We can do this more explicitly if desired:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = withProcessWait "false" checkExitCode

Reading from a process

Sending all output to the parent process's handles is sometimes desired, but often we'd rather just capture that output. The easiest way to do that is to capture it in memory as a lazy ByteString. Fortunately, we have a helper readProcess function for that:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed
import System.Exit (ExitCode)
import Data.ByteString.Lazy (ByteString)

main :: IO ()
main = do
    (exitCode, out, err) <- readProcess "date"
    print (exitCode :: ExitCode)
    print (out :: ByteString)
    print (err :: ByteString)

One thing to point out is that, even though this is a lazy ByteString, it is not using any lazy I/O. When readProcess exits, the output has been fully generated, and is resident in memory. We only use a lazy ByteString instead of a strict one for better memory configuration (chunking into multiple smaller bits instead of one massive chunk of data).

Like runProcess, there's an exit-code-checking variant of readProcess:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed
import Data.ByteString.Lazy (ByteString)

main :: IO ()
main = do
    (out, err) <- readProcess_ "date"
    print (out :: ByteString)
    print (err :: ByteString)

EXERCISE: Use shell redirection to move the output from standard output to standard error.

Redirecting to a file

Another technique we'll commonly want to employ is to redirect output from a process to a file. This is superior to the memory approach as it does not have the risk of using large amounts of memory, though it is more inconvenient. Together with the UnliftIO.Temporary, we can do some nice things:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed
import UnliftIO.Temporary (withSystemTempFile)

main :: IO ()
main = withSystemTempFile "date" $ \fp h -> do
    let dateConfig = setStdin closed
                   $ setStdout (useHandleClose h)
                   $ setStderr closed
                     "date"

    runProcess_ dateConfig

    readFile fp >>= print

The useHandleClose function lets us provide an already existing Handle, and will close it when done. If you want to write the output of multiple processes to a single file, you can instead use useHandleOpen:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed
import System.IO (hClose)
import UnliftIO.Temporary (withSystemTempFile)
import Control.Monad (replicateM_)

main :: IO ()
main = withSystemTempFile "date" $ \fp h -> do
    let dateConfig = setStdin closed
                   $ setStdout (useHandleOpen h)
                   $ setStderr closed
                     "date"

    replicateM_ 10 $ runProcess_ dateConfig
    hClose h

    readFile fp >>= putStrLn

EXERCISE Create a separate file for error output and capture that as well.

Providing input

Using OverloadedStrings, it's trivial to provide some input to a process:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = runProcess_ $ setStdin "Hello World!\n" "cat"

This is just a shortcut for using the byteStringInput function:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = runProcess_ $ setStdin (byteStringInput "Hello World!\n") "cat"

But like output and error, we can also use a Handle or a temporary file:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed
import System.IO
import UnliftIO.Temporary (withSystemTempFile)

main :: IO ()
main = withSystemTempFile "input" $ \fp h -> do
    hPutStrLn h "Hello World!"
    hClose h

    withBinaryFile fp ReadMode $ \h' ->
        runProcess_ $ setStdin (useHandleClose h') "cat"

Interacting with a process

So far, everything we've done has been running processes: spawning a child with some settings, then waiting for it to exit. We will often want to interact with a process: spawn it, and then send it input or receive output from it while it is still running.

For this, using createPipe makes a lot of sense:

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed
import System.IO

main :: IO ()
main = do
    let catConfig = setStdin createPipe
                  $ setStdout createPipe
                  $ setStderr closed
                    "cat"

    withProcess_ catConfig $ \p -> do
        hPutStrLn (getStdin p) "Hello!"
        hFlush (getStdin p)
        hGetLine (getStdout p) >>= print

        hClose (getStdin p)

EXERCISE: What happens if you remove the hClose line, and why? Hint: what happens if you both remove hCloseand replace withProcess_ with withProcess?

Other settings

We've so far only played with modifying streams, but there are a number of other settings you can tweak. It's best to just look at the API docs for all available functions. We'll give examples of the two most common settings: the working directory and environment variables.

#!/usr/bin/env stack
-- stack --resolver lts-16.27 script
{-# LANGUAGE OverloadedStrings #-}
import System.Process.Typed

main :: IO ()
main = do
    putStrLn "1:"
    runProcess_ "pwd"
    putStrLn "\n2:"
    runProcess_ $ setWorkingDir "/tmp" "pwd"

    putStrLn "\n3:"
    runProcess_ "env"
    putStrLn "\n4:"
    runProcess_ $ setEnv [("HELLO", "WORLD")] "env"

Async and STM

When interacting with a process on multiple streams, you'll often want to use some kind of concurrency. The strong recommendation is to use the async library. Additionally, this library provides a number of functions that use STM, which also plays very nicely with concurrency and the async package. For some examples, check out:

  • waitExitCodeSTM
  • getExitCodeSTM
  • checkExitCodeSTM
  • byteStringOutput

EXERCISE Reimplement the readProcess function using byteStringOutput and waitExitCodeSTM.

EXERCISE Reimplement the readProcess_ function using byteStringOutput and checkExitCodeSTM.

Metadata

Version

0.2.11.1

License

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows