Description
Exploratory Data Analysis, Group Comparison Tools, and Other Procedures.
Description
Provides a comprehensive set of tools for descriptive statistics, graphical data exploration, outlier detection, homoscedasticity testing, and multiple comparison procedures. Includes manual implementations of Levene's test, Bartlett's test, and the Fligner-Killeen test, as well as post hoc comparison methods such as Tukey, Scheffé, Games-Howell, Brunner-Munzel, and others. This version introduces two new procedures: the Jonckheere-Terpstra trend test and the Jarque-Bera test with Glinskiy's (2024) correction. Designed for use in teaching, applied statistical analysis, and reproducible research.
README.md
Analitica 
Analitica
is an R package that provides tools for descriptive statistics, exploratory visualization, outlier detection, homogeneity of variance tests, and post hoc group comparisons—both parametric and non-parametric.
It is especially useful for applied analysis, teaching, and reproducible research.
📦 Installation
You can install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("<your_github_username>/Analitica")
✨ Features
descripYG()
: Descriptive summaries with histograms, boxplots, or ridge plotsLevene.Test()
,BartlettTest()
,FKTest()
: Homoscedasticity testsgrubbs_outliers()
: Univariate outlier detection using Grubbs' testGHTest()
,TukeyTest()
,ScheffeTest()
,SNKTest()
: Parametric post hoc testsMWTest()
,BMTest()
,BMTest_perm()
: Non-parametric group comparisons
📊 Example
library(Analitica)
data(d_e, package = "Analitica")
descripYG(d_e, vd = Sueldo_actual, vi = labor)
mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
resultado <- GHTest(mod)
summary(resultado)
plot(resultado)
📄 License
MIT © Carlos Jiménez-Gallardo
📚 Citation
If you use this package, please cite it as:
Jiménez-Gallardo, C. (2025). Analitica: Exploratory Data Analysis and Group Comparison Tools. R package version 1.6.0.