MyNixOS website logo
Description

Estimation of Rainy Season Calendar and Soil Water Balance for Agriculture.

Computes and integrates daily reference 'evapotranspiration' ('Eto') into a water balance model, to estimate the calendar of wet-season (Onset, Cessation and Duration) based on 'agroclimatic' approach, for further information please refer to Allen 'et al.' (1998, ISBN:92-5-104219-5), Allen (2005, ISBN:9780784408056), 'Doorenbos' and Pruitt (1975, ISBN:9251002797) 'Guo et al.' (2016) <doi:10.1016/j.envsoft.2015.12.019>, Hargreaves and 'Samani' (1985) <doi:10.13031/2013.26773>, Priestley and Taylor (1972) <https://journals.ametsoc.org/downloadpdf/journals/mwre/100/2/1520-0493_1972_100_0081_otaosh_2_3_co_2.pdf>.

AquaBEHER

R-CMD-check Project Status: Active – The project has reached a stable, usablestate and is being activelydeveloped. pkgdown

The goal of AquaBEHER is to computes and integrates daily reference evapotranspiration (Eto) into FAO56 water balance model. The AquaBEHER package can estimate daily parameters of crop and soil water balances parameters for agricultural crops. The package can also estimate rainy season calandar (Onset, Cessation and Duration) based on agroclimatic approach.

Specifically, the package can perform the following functions:

  • Estimation of daily evapotranspiration
  • Estimation of daily soil water balance
  • Estimation of rainy season calandar:
    • Onset of the rainy season
    • Cessation of the rainy season
    • Duration of the rainy season

Installation

You can install the development version of AquaBEHER from GitHub with:

# install.packages("devtools")
devtools::install_github("RobelTakele/AquaBEHER")

Example

This is a basic example which shows you how to estimate daily water balance:

library(AquaBEHER)
library(ggplot2)
## basic example code

What is special about using README.Rmd instead of just README.md? You can include R chunks like so:

data(AgroClimateData)

head(AgroClimateData)
#>       GridID       Lat     Lon     Elev      WHC Year Month Day     Rain
#> 1 MOZ0007149 -15.09238 39.2519 392.1337 97.84914 1982     1   1 0.000000
#> 2 MOZ0007149 -15.09238 39.2519 392.1337 97.84914 1982     1   2 0.000000
#> 3 MOZ0007149 -15.09238 39.2519 392.1337 97.84914 1982     1   3 0.000000
#> 4 MOZ0007149 -15.09238 39.2519 392.1337 97.84914 1982     1   4 1.907393
#> 5 MOZ0007149 -15.09238 39.2519 392.1337 97.84914 1982     1   5 0.000000
#> 6 MOZ0007149 -15.09238 39.2519 392.1337 97.84914 1982     1   6 0.000000
#>       Tmax     Tmin       Rs     Tdew       Uz
#> 1 32.24396 23.11500 23.86698 20.21160 4.723783
#> 2 33.07202 23.12585 26.38375 20.48284 4.279407
#> 3 33.49679 23.12602 25.00704 20.45689 3.622179
#> 4 32.76818 23.60351 24.16475 20.83896 2.535047
#> 5 32.65872 22.79294 23.44483 21.36882 1.477617
#> 6 31.80630 22.43975 21.99277 21.29297 1.953415

Eto.daily <- calcEto(AgroClimateData, method = "PM", Zh = 10)
AgroClimateData$Eto <- Eto.daily$ET.Daily
soilWHC = 100
watBal <- calcWatBal(AgroClimateData, soilWHC)

The output of daily soil water balance can be ploted:


watBal <- watBal[watBal$Year %in% c(2010, 2020),]
date.vec <- as.Date.character(paste0(watBal$Year, "-", watBal$Month, "-", watBal$Day))

plot(watBal$AVAIL, ty="l", xlab="Days since 2010", ylab="Water (mm)", col="black", lwd = 1, lty = 2)
lines(watBal$Eto, col="red", lwd = 3)
lines(watBal$Rain, col="blue", lwd = 1)

   legend("bottom",c("Rain","Eto","Available Moisture"),
         horiz=TRUE, bty='n', cex=1,lty=c(1,1,2),lwd=c(2,2,2), inset=c(1,1),
         xpd=TRUE, col=c("blue","red","black"))

The Genetics Group at the Center of Plant Sciences is a geographically and culturally diverse research team working on data-drivem agicultural innovation combining crop genetics, climate, and participatory approaches. We are based at Scuola Superiore Sant’Anna, Pisa, Italy.

You can contact us sending an email to Matteo Dell’Acqua (mailto:[email protected]) or Mario Enrico Pè (mailto:[email protected]). You can find out more about us visiting the group web page (http://www.capitalisegenetics.santannapisa.it/) and following us on Twitter @GenLab_SSA

We are committed to the free software and FAIR principles. This set of repositories collects our latest developments and provide reusable code.

Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows