Description
An Interpretable Machine Learning-Based Automatic Clinical Score Generator.
Description
A novel interpretable machine learning-based framework to automate the development of a clinical scoring model for predefined outcomes. Our novel framework consists of six modules: variable ranking with machine learning, variable transformation, score derivation, model selection, domain knowledge-based score fine-tuning, and performance evaluation.The The original AutoScore structure is described in the research paper<doi:10.2196/21798>. A full tutorial can be found here<https://nliulab.github.io/AutoScore/>. Users or clinicians could seamlessly generate parsimonious sparse-score risk models (i.e., risk scores), which can be easily implemented and validated in clinical practice. We hope to see its application in various medical case studies.