MyNixOS website logo
Description

Bayesian Exposure-Response Analysis Tools.

Suite of tools that facilitate exposure-response analysis using Bayesian methods. The package provides a streamlined workflow for fitting types of models that are commonly used in exposure-response analysis - linear and Emax for continuous endpoints, logistic linear and logistic Emax for binary endpoints, as well as performing simulation and visualization. Learn more about the workflow at <https://genentech.github.io/BayesERbook/>.

BayesERtools BayesERtools website

R-CMD-check CRANstatus downloads Codecov testcoverage

BayesERtools provides a suite of tools that facilitate exposure-response analysis using Bayesian methods.

Installation

You can install the BayesERtools with:

install.packages('BayesERtools')
# devtools::install_github("genentech/BayesERtools") # development version

Supported model types

Binary endpoint
Continuous endpoint
Linear (logit)Emax (logit)LinearEmax
backendrstanarmrstanemaxrstanarmrstanemax
reference🔗🔗🔗🔗
develop model
simulate & plot ER
exposure metrics selection
covariate selection
covariate forest plot🟡
✅ Available, 🟡 In plan/under development, ❌ Not in a current plan

Quick guide

Here is a quick demo on how to use this package for E-R analysis. See vignette("basic_workflow_bin") for more thorough walk through of a basic workflow.

# Load package and data
library(dplyr)
library(BayesERtools)
ggplot2::theme_set(ggplot2::theme_bw(base_size = 12))

data(d_sim_binom_cov)

# Hyperglycemia Grade 2+ (hgly2) data
df_er_ae_hgly2 <-
  d_sim_binom_cov |>
  filter(AETYPE == "hgly2") |>
  # Re-scale AUCss, baseline age
  mutate(
    AUCss_1000 = AUCss / 1000, BAGE_10 = BAGE / 10,
    Dose = paste(Dose_mg, "mg")
  )

var_resp <- "AEFLAG"

Simple univariable model for binary endpoint

set.seed(1234)
ermod_bin <- dev_ermod_bin(
  data = df_er_ae_hgly2,
  var_resp = var_resp,
  var_exposure = "AUCss_1000"
)
ermod_bin
#> 
#> ── Binary ER model ─────────────────────────────────────────────────────────────
#> ℹ Use `plot_er()` to visualize ER curve
#> 
#> ── Developed model ──
#> 
#> stan_glm
#>  family:       binomial [logit]
#>  formula:      AEFLAG ~ AUCss_1000
#>  observations: 500
#>  predictors:   2
#> ------
#>             Median MAD_SD
#> (Intercept) -2.04   0.23 
#> AUCss_1000   0.41   0.08 
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg

# Using `*` instead of `+` so that scale can be
# applied for both panels (main plot and boxplot)
plot_er_gof(ermod_bin, var_group = "Dose", show_coef_exp = TRUE) *
  xgxr::xgx_scale_x_log10()

Covariate selection

BGLUC (baseline glucose) is selected while other two covariates are not.

set.seed(1234)
ermod_bin_cov_sel <-
  dev_ermod_bin_cov_sel(
    data = df_er_ae_hgly2,
    var_resp = var_resp,
    var_exposure = "AUCss_1000",
    var_cov_candidate = c("BAGE_10", "RACE", "BGLUC")
  )
#> 
#> ── Step 1: Full reference model fit ──
#> 
#> ── Step 2: Variable selection ──
#> 
#> ℹ The variables selected were: AUCss_1000, BGLUC
#> 
#> ── Step 3: Final model fit ──
#> 
#> ── Cov mod dev complete ──
#> 
ermod_bin_cov_sel
#> ── Binary ER model & covariate selection ───────────────────────────────────────
#> ℹ Use `plot_submod_performance()` to see variable selection performance
#> ℹ Use `plot_er()` with `marginal = TRUE` to visualize marginal ER curve
#> 
#> ── Selected model ──
#> 
#> stan_glm
#>  family:       binomial [logit]
#>  formula:      AEFLAG ~ AUCss_1000 + BGLUC
#>  observations: 500
#>  predictors:   3
#> ------
#>             Median MAD_SD
#> (Intercept) -7.59   0.90 
#> AUCss_1000   0.46   0.08 
#> BGLUC        0.87   0.13 
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg
plot_submod_performance(ermod_bin_cov_sel)
coveffsim <- sim_coveff(ermod_bin_cov_sel)
plot_coveff(coveffsim)
Metadata

Version

0.2.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows