Description
Simulate, Evaluate, and Analyze Dose Finding Trials with Bayesian MCPMod.
Description
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
README.md
The {BayesianMCPmod}
package
...
Installation
The development version can be installed from this repository.
# install.packages("remotes")
remotes::install_github("https://github.com/Boehringer-Ingelheim/BayesianMCPmod")
Documentation
The package documentation is hosted here.
Contributing
...