MyNixOS website logo
Description

Nested Data Summary, Adverse Events and REDCap.

Tools and code snippets for summarizing nested data, adverse events and REDCap study information.

BiostatsUHNplus

Lifecycle:Stable CRANstatus metacrandownloads

The goal of BiostatsUHNplus is to house publicly available code functions and snippets (some with multiple package dependencies) used by Biostatistics@UHN in Toronto, Canada.

Many of these functions build upon the features of reportRmd.

Installation

First, install the latest version of reportRmd from CRAN with:

install.packages(c("reportRmd"), dependencies=TRUE);

Then install the latest version of BiostatsUHNplus from CRAN with:

install.packages(c("BiostatsUHNplus"), dependencies=TRUE);

If version 0.1.0 or higher of reportRmd is installed, the development version of BiostatsUHNplus can be installed from GitHub with:

# install.packages("devtools")
devtools::install_github("biostatsPMH/BiostatsUHNplus", ref="development")

Documentation

Online Documentation

Examples

A wrapper for the as.numeric function. Prints entries that fail to parse instead of throwing uninformative error

library(BiostatsUHNplus);
z <- as_numeric_parse(c(1:5, "String1",6:10,"String2"))
#> The following entries were converted to NA values:
#> Entry 6, 'String1'
#> Entry 12, 'String2'
z
#>  [1]  1  2  3  4  5 NA  6  7  8  9 10 NA

Nested summary of adverse events by participant in cohort, stratified by attribution to first study drug

Uses addendum simulated study data and applies variable labels. Interpret summary output and unnested or nested p-value with caution!

Note that if participants were enrolled in more than one cohort (crossover), or if repeat AEs in participant had different attribution, the total N for Full Sample will be less than that of the total N of attribution for first study drug. Since total N for Full Sample (234) is less than total N of the first study drug attribution categories (49 + 198), this suggests that there was instances of repeat AEs in participants having different attribution to first study drug.

library(plyr);
library(BiostatsUHNplus);

data("enrollment", "demography", "ineligibility", "ae");
clinT <- plyr::join_all(list(enrollment, demography, ineligibility, ae), 
  by = "Subject", type = "full");
clinT$AE_SEV_GD <- as.numeric(clinT$AE_SEV_GD);
clinT$Drug_1_Attribution <- "Unrelated";
clinT$Drug_1_Attribution[clinT$CTC_AE_ATTR_SCALE %in% 
                           c("Definite", "Probable", "Possible")] <- "Related";
clinT$Drug_2_Attribution <- "Unrelated";
clinT$Drug_2_Attribution[clinT$CTC_AE_ATTR_SCALE_1 %in% 
                           c("Definite", "Probable", "Possible")] <- "Related";
lbls <- data.frame(c1=c("AE_SEV_GD", "ENROL_DATE_INT", "COHORT", "GENDER_CODE", 
  "INELIGIBILITY_STATUS", "AE_ONSET_DT_INT", "Drug_2_Attribution", "ae_category"),
  c2=c("Adverse event severity grade", "Enrollment date", "Cohort", "Gender", 
       "Ineligibility", "Adverse event onset date", "Attribution to second study drug",
       "Adverse event system organ class"));
clinT <- reportRmd::set_labels(clinT, lbls);

rm_covsum_nested(data = clinT, id = c("ae_detail", "Subject", "COHORT"), 
  covs = c("COHORT", "GENDER_CODE", "INELIGIBILITY_STATUS", "ENROL_DATE_INT", 
           "AE_SEV_GD", "Drug_2_Attribution", "AE_ONSET_DT_INT", "ae_category"), 
  maincov = "Drug_1_Attribution");
Full Sample (n=234) Related (n=49) Unrelated (n=198) Unnested p-value Unnested Effect Size Unnested StatTest Nested p-value
Cohort 0.65 0.081 Chi Sq, Cramer’s V 0.95
Cohort A 59 (25) 13 (27) 49 (25)
Cohort B 83 (35) 14 (29) 74 (37)
Cohort C 37 (16) 10 (20) 30 (15)
Cohort D 55 (24) 12 (24) 45 (23)
Gender 0.14 0.093 Chi Sq, Cramer’s V 0.63
Female 51 (22) 15 (31) 39 (20)
Male 183 (78) 34 (69) 159 (80)
Ineligibility Chi Sq, Cramer’s V
No 215 (100) 46 (100) 181 (100)
Missing 19 3 17
Enrollment date Wilcoxon Rank Sum, Wilcoxon r
Mean (sd) 2017-01-07 (301.8 days) 2017-01-31 (322.7 days) 2016-12-28 (294.3 days)
Median (Min,Max) 2016-09-14 (2016-01-18, 2018-05-16) 2017-02-07 (2016-01-18, 2018-05-16) 2016-09-14 (2016-01-18, 2018-05-16)
Adverse event severity grade 0.12 0.098 Wilcoxon Rank Sum, Wilcoxon r 0.97
Mean (sd) 1.8 (0.8) 2.0 (0.9) 1.7 (0.8)
Median (Min,Max) 1.5 (1.0, 5.0) 2 (1, 4) 1.5 (1.0, 5.0)
Attribution to second study drug<0.001 0.55 Chi Sq, Cramer’s V <0.001
Related 37 (16) 28 (57) 11 (6)
Unrelated 197 (84) 21 (43) 187 (94)
Adverse event onset date Wilcoxon Rank Sum, Wilcoxon r
Mean (sd) 2017-11-03 (161.1 days) 2017-10-01 (146.6 days) 2017-11-10 (161.2 days)
Median (Min,Max) 2017-10-05 (2016-05-02, 2019-01-13) 2017-09-07 (2017-03-18, 2018-11-24) 2017-10-15 (2016-05-02, 2019-01-13)
Adverse event system organ class0.003 0.42 Chi Sq, Cramer’s V Did not converge;
quasi or complete
category separation
Blood and lymphatic system disorders 15 (6) 6 (12) 10 (5)
Cardiac disorders 6 (3) 0 (0) 6 (3)
Ear and labyrinth disorders 1 (0) 0 (0) 1 (1)
Endocrine disorders 1 (0) 1 (2) 0 (0)
Eye disorders 4 (2) 0 (0) 4 (2)
Gastrointestinal disorders 32 (14) 16 (33) 22 (11)
General disorders and administration site conditions 19 (8) 1 (2) 18 (9)
Hepatobiliary disorders 2 (1) 0 (0) 2 (1)
Immune system disorders 1 (0) 0 (0) 1 (1)
Infections and infestations 15 (6) 5 (10) 13 (7)
Injury, poisoning and procedural complications 4 (2) 1 (2) 4 (2)
Investigations 34 (15) 12 (24) 23 (12)
Metabolism and nutrition disorders 25 (11) 3 (6) 22 (11)
Musculoskeletal and connective tissue disorders 7 (3) 0 (0) 7 (4)
Neoplasms benign, malignant and unspecified (incl cysts and polyps) 1 (0) 0 (0) 1 (1)
Nervous system disorders 20 (9) 3 (6) 18 (9)
Psychiatric disorders 4 (2) 0 (0) 4 (2)
Renal and urinary disorders 5 (2) 0 (0) 5 (3)
Reproductive system and breast disorders 1 (0) 0 (0) 1 (1)
Respiratory, thoracic and mediastinal disorders 19 (8) 1 (2) 18 (9)
Skin and subcutaneous tissue disorders 13 (6) 0 (0) 13 (7)
Vascular disorders 5 (2) 0 (0) 5 (3)

Outputs three DSMB-CCRU AE summary tables in Excel format per UHN template

Uses addendum simulated study data. DSMB-CCRU AE summary tables in below code example can be found in the man/tables folder of BiostatsUHNplus package.

library(BiostatsUHNplus);
data("enrollment", "demography", "ineligibility", "ae");

## This does summary for all participants;
dsmb_ccru(protocol="EXAMPLE_STUDY",setwd="./man/tables/",
          title="Phase X Study to Evaluate Treatments A-D",
          comp=NULL,pi="Dr. Principal Investigator",
          presDate="30OCT2020",cutDate="31AUG2020",
          boundDate=NULL,subjID="Subject",subjID_ineligText=c("New Subject","Test"),
          baseline_datasets=list(enrollment,demography,ineligibility),
          ae_dataset=ae,ineligVar="INELIGIBILITY_STATUS",ineligVarText=c("Yes","Y"),
          genderVar="GENDER_CODE",enrolDtVar="ENROL_DATE_INT",ae_detailVar="ae_detail",
          ae_categoryVar="ae_category",ae_severityVar="AE_SEV_GD",
          ae_onsetDtVar="AE_ONSET_DT_INT",ae_detailOtherText="Other, specify",
          ae_detailOtherVar="CTCAE5_LLT_NM",ae_verbatimVar="AE_VERBATIM_TRM_TXT",
          numSubj=NULL)

## This does summary for each cohort;
dsmb_ccru(protocol="EXAMPLE_STUDY",setwd="./man/tables/",
          title="Phase X Study to Evaluate Treatments A-D",
          comp="COHORT",pi="Dr. Principal Investigator",
          presDate="30OCT2020",cutDate="31AUG2020",
          boundDate=NULL,subjID="Subject",subjID_ineligText=c("New Subject","Test"),
          baseline_datasets=list(enrollment,demography,ineligibility),
          ae_dataset=ae,ineligVar="INELIGIBILITY_STATUS",ineligVarText=c("Yes","Y"),
          genderVar="GENDER_CODE",enrolDtVar="ENROL_DATE_INT",ae_detailVar="ae_detail",
          ae_categoryVar="ae_category",ae_severityVar="AE_SEV_GD",
          ae_onsetDtVar="AE_ONSET_DT_INT",ae_detailOtherText="Other, specify",
          ae_detailOtherVar="CTCAE5_LLT_NM",ae_verbatimVar="AE_VERBATIM_TRM_TXT",
          numSubj=NULL)

## Does same as above, but overrides number of subjects in cohorts;
dsmb_ccru(protocol="EXAMPLE_STUDY",setwd="./man/tables/",
          title="Phase X Study to Evaluate Treatments A-D",
          comp="COHORT",pi="Dr. Principal Investigator",
          presDate="30OCT2020",cutDate="31AUG2020",
          boundDate=NULL,subjID="Subject",subjID_ineligText=c("New Subject","Test"),
          baseline_datasets=list(enrollment,demography,ineligibility),
          ae_dataset=ae,ineligVar="INELIGIBILITY_STATUS",ineligVarText=c("Yes","Y"),
          genderVar="GENDER_CODE",enrolDtVar="ENROL_DATE_INT",ae_detailVar="ae_detail",
          ae_categoryVar="ae_category",ae_severityVar="AE_SEV_GD",
          ae_onsetDtVar="AE_ONSET_DT_INT",ae_detailOtherText="Other, specify",
          ae_detailOtherVar="CTCAE5_LLT_NM",ae_verbatimVar="AE_VERBATIM_TRM_TXT",
          numSubj=c(3,4,3,3))

Related adverse event onset timeline plots

Example 1

Uses addendum simulated study data. Shows timeline for onset of related AE after study enrollment. Can display up to 5 attributions. Time unit may be one of day, week, month or year.

Note that if more than one field is given for startDtVars (unique names required), each field is assumed to be specific start date for attribution in corresponding field order.

The below plot includes both AE category and AE detail in default colour and font scheme.

library(ggplot2);
library(BiostatsUHNplus);
data("enrollment", "ae");

p <- ae_timeline_plot(subjID="Subject",subjID_ineligText=c("New Subject","Test"),
                 baseline_datasets=list(enrollment),
                 ae_dataset=ae,
                 ae_attribVars=c("CTC_AE_ATTR_SCALE","CTC_AE_ATTR_SCALE_1"),
                 ae_attribVarsName=c("Drug 1","Drug 2"),
                 ae_attribVarText=c("Definite", "Probable", "Possible"),
                 startDtVars=c("ENROL_DATE_INT"),ae_detailVar="ae_detail",
                 ae_categoryVar="ae_category",ae_severityVar="AE_SEV_GD",
                 ae_onsetDtVar="AE_ONSET_DT_INT",time_unit="week")
ggplot2::ggsave(paste("man/figures/ae_detail_timeline_plot", ".png", sep=""), p, 
                width=6.4, height=10, device="png", scale = 1.15);

Example 2

The next plot summarizes timeline by AE category. Fonts, colours, symbols, column widths (character length) and time unit are customized.

The width, height and scale parameters in ggsave() can also be modified to fit a large plot.

library(ggplot2);
library(BiostatsUHNplus);
data("enrollment", "ae");

p <- ae_timeline_plot(subjID="Subject",subjID_ineligText=c("New Subject","Test"),
                 baseline_datasets=list(enrollment),
                 ae_dataset=ae,
                 ae_attribVars=c("CTC_AE_ATTR_SCALE","CTC_AE_ATTR_SCALE_1"),
                 ae_attribVarsName=c("Drug 1","Drug 2"),
                 ae_attribVarText=c("Definite", "Probable", "Possible"),
                 startDtVars=c("ENROL_DATE_INT"),ae_detailVar="ae_detail",
                 ae_categoryVar="ae_category",ae_severityVar="AE_SEV_GD",
                 ae_onsetDtVar="AE_ONSET_DT_INT",time_unit="month",
                 include_ae_detail=FALSE,
                 fonts=c("Forte","Gadugi","French Script MT","Albany AMT","Calibri"),
                 fontColours=c("#FF4F00","#FFDB58"),
                 panelColours=c("#AAF0D1",NA,"white"),
                 attribColours=c("#F6ADC6","#C54B8C","#A4DDED","#0077BE","#9AB973",
                                 "#01796F","#FFA343","#CC7722","#E0B0FF","#5A4FCF"),
                 attribSymbols=c(5,6,7,8,15,16,17,18,19,20),
                 columnWidths=c(23,15))
ggplot2::ggsave(paste("man/figures/ae_category_timeline_plot", ".png", sep=""), p, 
                width=3.6, height=5.4, device="png", scale = 1);

Example 3

If available, specific start date for attribution in corresponding field order (unique field name required) can be used. Drug start date is closer to AE onset than enrollment date.

Below, subjects 01 and 11 are excluded.

library(ggplot2);
library(BiostatsUHNplus);
data("drug1_admin", "drug2_admin", "ae");

p <- ae_timeline_plot(subjID="Subject",subjID_ineligText=c("01","11"),
                 baseline_datasets=list(drug1_admin, drug2_admin),
                 ae_dataset=ae,
                 ae_attribVars=c("CTC_AE_ATTR_SCALE","CTC_AE_ATTR_SCALE_1"),
                 ae_attribVarsName=c("Drug 1","Drug 2"),
                 ae_attribVarText=c("Definite", "Probable", "Possible"),
                 startDtVars=c("TX1_DATE_INT","TX2_DATE_INT"),
                 ae_detailVar="ae_detail",
                 ae_categoryVar="ae_category",ae_severityVar="AE_SEV_GD",
                 ae_onsetDtVar="AE_ONSET_DT_INT",time_unit="month",
                 include_ae_detail=FALSE,
                 fonts=c("Calibri","Albany AMT","Gadugi","French Script MT","Forte"),
                 fontColours=c("#FFE135"),
                 panelColours=c("#E52B50",NA,"#FFF5EE"),
                 attribColours=c("#9AB973","#01796F","#FFA343","#CC7722"),   
                 attribSymbols=c(7,8,5,6),
                 columnWidths=c(23))
ggplot2::ggsave(paste("man/figures/ae_category_attribStart_timeline_plot", ".png", sep=""), 
                p, width=4.2, height=5.4, device="png", scale = 1);

Summary functions for MCMCglmm object with binary outcome

Model output for fixed effects

Below runs a logistic MCMCglmm model on the odds of grade 3 or higher adverse event, controlling for attribution of first and second intervention drugs. Subject and system organ class are treated as random effects. Model has 800 posterior samples. Should specify burnin=125000, nitt=625000 and thin=100 for 5000 posterior samples with lower autocorrelation. Aim for effective sample sizes of at least 2000.

data("ae");

ae$G3Plus <- 0;
ae$G3Plus[ae$AE_SEV_GD %in% c("3", "4", "5")] <- 1;
ae$Drug_1_Attribution <- "No";
ae$Drug_1_Attribution[ae$CTC_AE_ATTR_SCALE %in% c("Definite", "Probable", "Possible")] <- "Yes";
ae$Drug_2_Attribution <- "No";
ae$Drug_2_Attribution[ae$CTC_AE_ATTR_SCALE_1 %in% c("Definite", "Probable", "Possible")] <- "Yes";

prior2RE <- list(R = list(V = diag(1), fix = 1),
  G=list(G1=list(V=1, nu=0.02), G2=list(V=1, nu=0.02)));
  
model1 <- MCMCglmm::MCMCglmm(G3Plus ~ Drug_1_Attribution + Drug_2_Attribution, 
  random=~Subject + ae_category, family="categorical", data=ae, saveX=TRUE, 
  verbose=F, burnin=4000, nitt=12000, thin=10, pr=TRUE, prior=prior2RE);

mcmcglmm_mva <- nice_mcmcglmm(model1, ae);
options(knitr.kable.NA = '');
knitr::kable(mcmcglmm_mva);
Variable Levels OR (95% HPDI) MCMCp eff.samp
Drug 1 Attribution No reference
Yes 2.73 (1.12, 7.17) 0.030 205.12
Drug 2 Attribution No reference
Yes 0.43 (0.14, 1.17) 0.115 155.97

Intraclass correlation coefficients

Most of the observed variation in grade 3 or higher adverse event status is attributable to adverse event category, also known as system organ class.

mcmcglmm_icc <- nice_mcmcglmm_icc(model1, prob=0.95, decimals=4);
options(knitr.kable.NA = '');
knitr::kable(mcmcglmm_icc);
ICC lower upper
Subject 0.0873 0.0070 0.3423
ae_category 0.7926 0.4533 0.9116
units 0.1412 0.0422 0.2609

Caterpillar plots of random effects - participant

After controlling for first and second drug attributions, subject 01 has a higher odds for grade 3 or higher adverse event than the average of study participants.

p <- caterpillar_plot(subjID = "Subject",
  mcmcglmm_object = model1,
  prob = 0.95,
  orig_dataset = ae,
  ncol = 2,
  binaryOutcomeVar = "G3Plus")
ggplot2::ggsave(paste("man/figures/caterpillar_plot_subject", ".png", sep=""), 
       p, scale = 1.0, width=6.4, height=3.4, device="png");

Caterpillar plots of random effects - system organ class

Highest posterior density intervals, also known as credible intervals, are not symmetric. Need to run model for more iterations with higher burnin.

p <- caterpillar_plot(subjID = "ae_category",
  mcmcglmm_object = model1,
  prob = 0.95,
  orig_dataset = ae,
  ncol = 4,
  columnTextWidth = 22,
  binaryOutcomeVar = "G3Plus",
  subtitle = "System organ class (n, events)",
  title = "Odds Ratio for G3+ Severity with 95% Highest Posterior Density Interval",
  fonts = c("Arial", "Arial", "Arial", "Arial"),
  break.label.summary = TRUE)
ggplot2::ggsave(paste("man/figures/caterpillar_plot_ae_category", ".png", sep=""), 
       p, scale = 1.3, width=6.4, height=3.8, device="png");
Metadata

Version

0.0.10

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows