MyNixOS website logo
Description

Decomposition of Bulk Expression with Single-Cell Sequencing.

Provides tools to accurately estimate cell type abundances from heterogeneous bulk expression. A reference-based method utilizes single-cell information to generate a signature matrix and transformation of bulk expression for accurate regression based estimates. A marker-based method utilizes known cell-specific marker genes to measure relative abundances across samples. For more details, see Jew and Alvarez et al (2019) <doi:10.1101/669911>.

Bisque

Build Status codecov install with bioconda CRAN Version

An R toolkit for accurate and efficient estimation of cell composition ('decomposition') from bulk expression data with single-cell information.

Bisque provides two modes of operation:

Reference-based decomposition

This method utilizes single-cell data to decompose bulk expression. We assume that both single-cell and bulk counts are measured from the same tissue. Specifically, the cell composition of the labeled single-cell data should match the expected physiological composition. While we don't explicitly require matched samples, we expect having samples with both single-cell and bulk expression measured will provide more accurate results.

Marker-based decomposition

This method utilizes marker genes alone to decompose bulk expression when a reference profile is not available. Single-cell data is not explicitly required but can be used to identify these marker genes. This method captures relative abundances of a cell type across individuals. Note that these abundances are not proportions, so they cannot be compared between different cell types.

Installation

The Bisque R package is available on CRAN

install.packages("BisqueRNA")

as well as Bioconda

conda install r-bisquerna

The package can also be installed from the GitHub repository

devtools::install_github("cozygene/bisque")

Getting Started

You can load Bisque as follows:

library(BisqueRNA)

The two modes of operation described above are called as follows:

res <- BisqueRNA::ReferenceBasedDecomposition(bulk.eset, sc.eset, markers)
res <- BisqueRNA::MarkerBasedDecomposition(bulk.eset, markers)

Each method returns a list of results with estimated cell proportions/abundances stored in res$bulk.props.

To see examples of these methods on simulated data, check out the vignette:

browseVignettes("BisqueRNA")
Metadata

Version

1.0.5

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows