MyNixOS website logo
Description

A Method for 'Connecting The Dots' in Weighted Graphs.

A method for pattern discovery in weighted graphs as outlined in Thistlethwaite et al. (2021) <doi:10.1371/journal.pcbi.1008550>. Two use cases are achieved: 1) Given a weighted graph and a subset of its nodes, do the nodes show significant connectedness? 2) Given a weighted graph and two subsets of its nodes, are the subsets close neighbors or distant?

CTD: an information-theoretic method to interpret multivariate perturbations in the context of graphical models with applications in metabolomics and transcriptomics

Our novel network-based approach, CTD, “connects the dots” between metabolite perturbations observed in individual metabolomics profiles and a given disease state by calculating how connected those metabolites are in the context of a disease-specific network.

Using CTD in R.

Installation

We are now a CRAN package! Install on R 4.0+ with install.packages("CTD").

Alternatively, particularly if you have an earlier version of R installed, you can install using devtools: require(devtools) install_github(“BRL-BCM/CTD”).

Look at the package Rmd vignette.

Located in /inst/doc/CTD_Lab-Exercise.Rmd. It will take you across all the stages in the analysis pipeline, including:

  1. Background knowledge graph generation.
  2. The encoding algorithm: including generating node permutations using a network walker, converting node permutations into bitstrings, and calculating the minimum encoding length between k codewords.
  3. Calculate the probability of a node subset based on the encoding length.
  4. Calculate similarity between two node subsets, using a metric based on mutual information.

References

Thistlethwaite L.R., Petrosyan V., Li X., Miller M.J., Elsea S.H., Milosavljevic A. (2021). CTD: an information-theoretic method to interpret multivariate perturbations in the context of graphical models with applications in metabolomics and transcriptomics. Plos Comput Biol, 17(1):e1008550. https://doi.org/10.1371/journal.pcbi.1008550.

Metadata

Version

1.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows