MyNixOS website logo
Description

Spatial and Spatio-Temporal Bayesian Model for Circular Data.

Implementation of Bayesian models for spatial and spatio-temporal interpolation of circular data using Gaussian Wrapped and Gaussian Projected distributions. We developed the methods described in Jona Lasinio G. et al. (2012) <doi: 10.1214/12-aoas576>, Wang F. et al. (2014) <doi: 10.1080/01621459.2014.934454> and Mastrantonio G. et al. (2016) <doi: 10.1007/s11749-015-0458-y>.

CircSpaceTime

Spatial and Spatio-Temporal Bayesian Model for Circular Data

Implementation of Bayesian models for spatial and spatio-temporal interpolation of circular data using Gaussian Wrapped and Gaussian Projected distributions.

Currently the following models are implemented:
Spatial Wrapped Normal
Spatial Projected Normal
Spatio-Temporal Wrapped Normal
Spatio-Temporal Projected Normal

Installation

From source

If you are linux/linux-like users or simply you want to compile from source the best way is to use "devtools"

devtools_installed <- require(devtools)
 if (!devtools_installed){
   install.packages("devtools", dep = TRUE)
    library(devtools)
    }
  install_github("santoroma/CircSpaceTime")  

Dependencies: Rcpp, RcppArmadillo, circular, ggplot2, coda
Suggested: foreach, parallel, iterators, doParallel, knitr, rmarkdown, gridExtra

From CRAN

The package is in submission on CRAN.

  install.packages("CircSpaceTime", dep = TRUE)

Using the package

library(CircSpaceTime)

For further information on the package you can read the help or take a look at the vignette

Issues

Please help us to improve the package!
For any issue/error/"what is this?" report the best way is to visit the issues page and:

  1. Find if already exist a similar issue, read it and if the case write a precise comment with reproducible example.
  2. If not, open a new one writing a precise comment with reproducible example.

Thanks

Mario, Gianluca and Giovanna.

Metadata

Version

0.9.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows