MyNixOS website logo
Description

Summarise and Visualise Characteristics of Patients in the OMOP CDM.

Summarise and visualise the characteristics of patients in data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model (CDM).

CohortCharacteristics

CRANstatus codecov.io R-CMD-check Lifecycle:Experimental

Package overview

CohortCharacteristics contains functions for summarising characteristics of cohorts of patients identified in an OMOP CDM dataset. Once a cohort table has been created, CohortCharacteristics provides a number of functions to help provide a summary of the characteristics of the individuals within the cohort.

Package installation

You can install the latest version of CohortCharacteristics from CRAN:

install.packages("CohortCharacteristics")

Or from github:

install.packages("remotes")
remotes::install_github("darwin-eu-dev/CohortCharacteristics")

Example usage

The CohortCharacteristics package is designed to work with data in the OMOP CDM format, so our first step is to create a reference to the data using the CDMConnector package. For this example we will work with the example Eunomia dataset.

library(CDMConnector)
library(CohortCharacteristics)
library(dplyr)
cdm <- mockCohortCharacteristics(patient_size = 1000, drug_exposure_size = 1000)
cdm

We can see that in this example data we have a cohort table called cohort1.

cdm$cohort1
#> # Source:   table<main.cohort1> [4 x 4]
#> # Database: DuckDB v0.10.0 [martics@Windows 10 x64:R 4.2.1/:memory:]
#>   cohort_definition_id subject_id cohort_start_date cohort_end_date
#>                  <dbl>      <dbl> <date>            <date>         
#> 1                    1          1 2020-01-01        2020-04-01     
#> 2                    1          1 2020-06-01        2020-08-01     
#> 3                    1          2 2020-01-02        2020-02-02     
#> 4                    2          3 2020-01-01        2020-03-01

With one line of code from CohortCharacteristics we can generate summary statistics on this cohort.

cohort1_characteristics <- summariseCharacteristics(cdm$cohort1)
cohort1_characteristics |> 
  glimpse()
#> Rows: 70
#> Columns: 13
#> $ result_id        <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ cdm_name         <chr> "PP_MOCK", "PP_MOCK", "PP_MOCK", "PP_MOCK", "PP_MOCK"…
#> $ group_name       <chr> "cohort_name", "cohort_name", "cohort_name", "cohort_…
#> $ group_level      <chr> "cohort_1", "cohort_2", "cohort_1", "cohort_2", "coho…
#> $ strata_name      <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ strata_level     <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ variable_name    <chr> "Number records", "Number records", "Number subjects"…
#> $ variable_level   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
#> $ estimate_name    <chr> "count", "count", "count", "count", "min", "min", "q2…
#> $ estimate_type    <chr> "integer", "integer", "integer", "integer", "date", "…
#> $ estimate_value   <chr> "3", "1", "2", "1", "2020-01-01", "2020-01-01", "2020…
#> $ additional_name  <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ additional_level <chr> "overall", "overall", "overall", "overall", "overall"…

And with another line we can create a table of these results.

tableCharacteristics(cohort1_characteristics, type = "tibble")
#> # A tibble: 17 × 6
#>    `CDM name` `Variable name`    `Variable level` `Estimate name`   
#>    <chr>      <chr>              <chr>            <chr>             
#>  1 PP_MOCK    Number records     <NA>             N                 
#>  2 PP_MOCK    Number subjects    <NA>             N                 
#>  3 PP_MOCK    Cohort start date  <NA>             Median [Q25 - Q75]
#>  4 PP_MOCK    Cohort start date  <NA>             Range             
#>  5 PP_MOCK    Cohort end date    <NA>             Median [Q25 - Q75]
#>  6 PP_MOCK    Cohort end date    <NA>             Range             
#>  7 PP_MOCK    Sex                Female           N (%)             
#>  8 PP_MOCK    Sex                Male             N (%)             
#>  9 PP_MOCK    Age                <NA>             Median [Q25 - Q75]
#> 10 PP_MOCK    Age                <NA>             Mean (SD)         
#> 11 PP_MOCK    Age                <NA>             Range             
#> 12 PP_MOCK    Prior observation  <NA>             Median [Q25 - Q75]
#> 13 PP_MOCK    Prior observation  <NA>             Mean (SD)         
#> 14 PP_MOCK    Prior observation  <NA>             Range             
#> 15 PP_MOCK    Future observation <NA>             Median [Q25 - Q75]
#> 16 PP_MOCK    Future observation <NA>             Mean (SD)         
#> 17 PP_MOCK    Future observation <NA>             Range             
#> # ℹ 2 more variables: `[header]Cohort name\n[header_level]Cohort 1` <chr>,
#> #   `[header]Cohort name\n[header_level]Cohort 2` <chr>

CohortCharacteristics provides a number of other functions to help summarise cohort tables and present the results in publication-ready tables and figures. See the vignettes for more details.

Metadata

Version

0.2.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows