MyNixOS website logo
Description

"Risk Model Regression and Analysis with Complex Non-Linear Models".

Performs survival analysis using general non-linear models. Risk models can be the sum or product of terms. Each term is the product of exponential/linear functions of covariates. Additionally sub-terms can be defined as a sum of exponential, linear threshold, and step functions. Cox Proportional hazards <https://en.wikipedia.org/wiki/Proportional_hazards_model>, Poisson <https://en.wikipedia.org/wiki/Poisson_regression>, and Fine-Grey competing risks <https://www.publichealth.columbia.edu/research/population-health-methods/competing-risk-analysis> regression are supported. This work was sponsored by NASA Grant 80NSSC19M0161 through a subcontract from the National Council on Radiation Protection and Measurements (NCRP). The computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CNS-1006860, EPS-1006860, EPS-0919443, ACI-1440548, CHE-1726332, and NIH P20GM113109.

Colossus

The goal of Colossus is to provide an open-source means of performing survival analysis on big data with complex risk formula. Colossus is designed to perform Cox Proportional Hazard regressions and Poisson regressions on datasets loaded as data.tables or data.frames. The risk models allowed are sums or products of linear, log-linear, or several other radiation dose response formula highlighted in the vignettes. Additional plotting capabilities are available.

By default a fully portable version of the code is compiled, which does not support OpenMP on every system. Please consult the GitHub for details on libraries required for your OS if you are interested in using OpenMP on linux. Note that Colossus requires OpenMP support to perform parallel calculations. During the configuration stage of installation, text starting with “CONFIG NOTE” will denote what OS/Compiler are detected and if OpenMP support is configured. Currently OpenMP support is not configured for linux compiling with clang and MacOS systems.

Example

This is a basic example which shows you how to solve a common problem:

library(data.table)
library(parallel)
library(Colossus)
## basic example code reproduced from the starting-description vignette

df <- data.table("UserID"=c(112, 114, 213, 214, 115, 116, 117),
           "Starting_Age"=c(18,  20,  18,  19,  21,  20,  18),
             "Ending_Age"=c(30,  45,  57,  47,  36,  60,  55),
          "Cancer_Status"=c(0,   0,   1,   0,   1,   0,   0),
                      "a"=c(0,   1,   1,   0,   1,   0,   1),
                      "b"=c(1,   1.1, 2.1, 2,   0.1, 1,   0.2),
                      "c"=c(10,  11,  10,  11,  12,  9,   11),
                      "d"=c(0,   0,   0,   1,   1,   1,   1))
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"

names <- c('a','b','c','d')
Term_n <- c(0,1,1,2)
tform <- c("loglin","lin","lin","plin")
modelform <- "M"
fir <- 0

a_n <- c(0.1, 0.1, 0.1, 0.1)

keep_constant <- c(0,0,0,0)
der_iden <- 0

control=list('lr' = 0.75,'maxiter' = 100,'halfmax' = 5,'epsilon' = 1e-9,
             'dbeta_max' = 0.5,'deriv_epsilon' = 1e-9, 'abs_max'=1.0,
             'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE,
             'ties'='breslow','double_step'=1)

e <- RunCoxRegression(df, time1, time2, event, names, Term_n, tform, keep_constant, a_n, modelform, fir, der_iden, control)
print(e)
#> $LogLik
#> [1] -0.6753644
#> 
#> $First_Der
#> [1]  0.000000e+00 -7.187040e-05  7.361232e-05  1.919948e-04
#> 
#> $Second_Der
#>              [,1]         [,2]          [,3]          [,4]
#> [1,] 0.000000e+00 0.000000e+00  0.000000e+00  4.965508e-19
#> [2,] 0.000000e+00 1.742209e-08  7.238366e-07  2.311365e-07
#> [3,] 0.000000e+00 7.238366e-07 -1.501037e-06 -2.356033e-07
#> [4,] 4.965508e-19 2.311365e-07 -2.356033e-07 -3.687577e-06
#> 
#> $beta_0
#> [1]  41.26157  98.72266  96.82311 101.10000
#> 
#> $Standard_Deviation
#> [1]      NaN      NaN 177.9643   0.0000
#> 
#> $AIC
#> [1] 9.350729
#> 
#> $BIC
#> [1] 9.134369
#> 
#> $Parameter_Lists
#> $Parameter_Lists$Term_n
#> [1] 0 1 1 2
#> 
#> $Parameter_Lists$tforms
#> [1] "loglin" "lin"    "lin"    "plin"  
#> 
#> $Parameter_Lists$names
#> [1] "a" "b" "c" "d"
#> 
#> 
#> $Control_List
#> $Control_List$Iteration
#> [1] 100
#> 
#> $Control_List$`Maximum Step`
#> [1] 1
#> 
#> $Control_List$`Derivative Limiting`
#> [1] 0.0001919948
#> 
#> 
#> $Converged
#> [1] FALSE
Metadata

Version

1.1.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows