Description
Efficient Tuning-Free Conformal Prediction.
Description
An implementation of efficiency first conformal prediction (EFCP) and validity first conformal prediction (VFCP) that demonstrates both validity (coverage guarantee) and efficiency (width guarantee). To learn how to use it, check the vignettes for a quick tutorial. The package is based on the work by Yang Y., Kuchibhotla A.,(2021) <arxiv:2104.13871>.
README.md
ConformalSmallest
This package implements two selection algorithms for conformal prediction regions to obtain the smallest prediction set in practice; these are called “efficiency first” and “validity first” conformal prediction algorithms, EFCP and VFCP for short. For details please refer to our paper.
Installation
You can install the released version of ConformalSmallest from CRAN with:
install.packages("ConformalSmallest")
Or directly from github
devtools::install_github("Elsa-Yang98/ConformalSmallest")
Example
This is a basic example which shows you how to solve a common problem:
library(ConformalSmallest)
## basic example code
Example 1: Tuning free ridge regression with conformal prediction
library(glmnet)
library(MASS)
library(mvtnorm)
source("ginverse.fun.R")
source("functions.R")
name=paste("linear_fm_t3",sep="")
df <- 3 #degrees of freedom
l <- 60 #number of dimensions
l.lambda <- 100
lambda_seq <- seq(0,200,l=l.lambda)
dim <- round(seq(5,300,l=l))
alpha <- 0.1
n <- 200 #number of training samples
n0 <- 100 #number of prediction points
nrep <- 100 #number of independent trials
rho <- 0.5
cov.efcp <- len.efcp <- matrix(0,nrep,l)
cov.vfcp <- len.vfcp <- matrix(0,nrep,l)
cov.naive <- len.naive <- matrix(0,nrep,l)
cov.param <- len.param <- matrix(0,nrep,l)
cov.star <- len.star <- matrix(0,nrep,l)
cov.cv10 <- len.cv10 <- matrix(0,nrep,l)
cov.cv5 <- len.cv5 <- matrix(0,nrep,l)
cov.cvloo <- len.cvloo <- matrix(0,nrep,l)
out.efcp.up <- out.efcp.lo <- matrix(0,n0,l)
out.vfcp.up <- out.vfcp.lo <- matrix(0,n0,l)
out.naive.up <- out.naive.lo <- matrix(0,n0,l)
out.param.up <- out.param.lo <- matrix(0,n0,l)
out.star.up <- out.star.lo <- matrix(0,n0,l)
out.cv10.up <- out.cv10.lo <- matrix(0,n0,l)
out.cv5.up <- out.cv5.lo <- matrix(0,n0,l)
out.cvloo.up <- out.cvloo.lo <- matrix(0,n0,l)
for(i in 1:nrep){
cat(i,"\n")
for (r in 1:l){
d <- dim[r]
set.seed(i)
Sigma <- matrix(rho,d,d)
diag(Sigma) <- rep(1,d)
X <- rmvt(n,Sigma,df) #multivariate t distribution
beta <- rep(1:5,d/5)
eps <- rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2))
Y <- X%*%beta+eps
X0 <- rmvt(n0,Sigma,df)
eps0 <- rt(n0,df)*(1+sqrt(X0[,1]^2+X0[,2]^2))
Y0 <- X0%*%beta+eps0
out.param <- ginverse.fun(X,Y,X0,alpha=alpha)
out.param.lo[,r] <- out.param$lo
out.param.up[,r] <- out.param$up
cov.param[i,r] <- mean(out.param.lo[,r] <= Y0 & Y0 <= out.param.up[,r])
len.param[i,r] <- mean(out.param.up[,r]-out.param.lo[,r])
out.efcp <- efcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha)
out.efcp.up[,r] <- out.efcp$up
out.efcp.lo[,r] <- out.efcp$lo
cov.efcp[i,r] <- mean(out.efcp.lo[,r] <= Y0 & Y0 <= out.efcp.up[,r])
len.efcp[i,r] <- mean(out.efcp.up[,r]-out.efcp.lo[,r])
out.vfcp <- vfcp_ridge(X,Y,X0,lambda=lambda_seq,alpha=alpha)
out.vfcp.up[,r] <- out.vfcp$up
out.vfcp.lo[,r] <- out.vfcp$lo
cov.vfcp[i,r] <- mean(out.vfcp.lo[,r] <= Y0 & Y0 <= out.vfcp.up[,r])
len.vfcp[i,r] <- mean(out.vfcp.up[,r]-out.vfcp.lo[,r])
out.naive <- naive.fun(X,Y,X0,alpha=alpha)
out.naive.up[,r] <- out.naive$up
out.naive.lo[,r] <- out.naive$lo
cov.naive[i,r] <- mean(out.naive.lo[,r] <= Y0 & Y0 <= out.naive.up[,r])
len.naive[i,r] <- mean(out.naive.up[,r]-out.naive.lo[,r])
out.star <- star.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha)
out.star.up[,r] <- out.star$up
out.star.lo[,r] <- out.star$lo
cov.star[i,r] <- mean(out.star.lo[,r] <= Y0 & Y0 <= out.star.up[,r])
len.star[i,r] <- mean(out.star.up[,r] - out.star.lo[,r])
out.cv5 <- cv.fun(X,Y,X0,lambda=lambda_seq,alpha=alpha,nfolds=5)
out.cv5.up[,r] <- out.cv5$up
out.cv5.lo[,r] <- out.cv5$lo
cov.cv5[i,r] <- mean(out.cv5.lo[,r] <= Y0 & Y0 <= out.cv5.up[,r])
len.cv5[i,r] <- mean(out.cv5.up[,r] - out.cv5.lo[,r])
}
}
df.cov <- data.frame(dim,apply(cov.param,2,mean),apply(cov.naive,2,mean),apply(cov.vfcp,2,mean),apply(cov.star,2,mean),apply(cov.cv5,2,mean), apply(cov.efcp,2,mean))
df.len <- data.frame(dim,apply(len.param,2,mean),apply(len.naive,2,mean),apply(len.vfcp,2,mean),apply(len.star,2,mean),apply(len.cv5,2,mean), apply(len.efcp,2,mean))
save(dim,cov.param, cov.naive, cov.vfcp, cov.star, cov.cv5, cov.efcp, file = "cov100_t3.RData" )
save(dim,len.param, len.naive, len.vfcp, len.star, len.cv5, len.efcp, file = "len100_t3.RData" )
Example 2: Tuning free conformal quantile regression with random forest
This output the right panal of Figure 1 in our paper.
df <- 3
d <- 3
l.lambda <- 100
lambda_seq <- seq(0,200,l=l.lambda)
nset <- c(50,100,500,1000,5000)
alpha <- 0.1 #miscoverage level
n0 <- 100 #number of prediction points
nrep <- 100 #number of independent trials
rho <- 0.5
evaluations <- expand.grid(1:nrep, nset, c("efficient", "valid"))
no_eval <- nrow(evaluations)
width_mat <- cov_mat <- data.frame(number = rep(0, no_eval),
rep = evaluations[,1],
nset = evaluations[,2],
method = evaluations[,3])
colnames(width_mat) <- colnames(cov_mat) <- c("number", "rep", "sample size", "method")
Sigma <- matrix(rho,d,d)
diag(Sigma) <- rep(1,d) #covariance matrix for X
for(idx in 1:nrow(evaluations)){
set.seed(evaluations[idx, 1])
if(idx%%1 == 0){
print(idx)
}
n <- evaluations[idx, 2]
X <- rmvt(n,Sigma,df) #multivariate t distribution
eps1 <- rt(n,df)*(1+sqrt(X[,1]^2+X[,2]^2))
eps2 <- rt(n,df)*(1+sqrt(X[,1]^4+X[,2]^4))
Y <- rpois(n,sin(X[,1])^2 + cos(X[,2])^4+0.01 )+0.03*X[,1]*eps1+25*(runif(n,0,1)<0.01)*eps2
X0 <- rmvt(n0,Sigma,df)
eps01 <- rt(n0,df)*(1+sqrt(X0[,1]^2+X0[,2]^2))
eps02 <- rt(n0,df)*(1+sqrt(X0[,1]^4+X0[,2]^4))
Y0 <- rpois(n0,sin(X0[,1])^2 + cos(X0[,2])^4+0.01 )+0.03*X0[,1]*eps01+25*(runif(n0,0,1)<0.01)*eps02
width_mat[idx,3] <- cov_mat[idx, 3] <- n
method <- evaluations[idx, 3]
width_mat[idx,4] <- cov_mat[idx, 4] <- method
width_mat[idx, 2] <- cov_mat[idx, 2] <- evaluations[idx, 1]
if(method == "valid"){
split <- c(1/2, 1/2)
} else {
split <- 1/2
}
beta_grid <- seq(1e-03, 4, length = 20)*alpha
mtry_grid <- unique(ceiling(seq(1/10, 1, length = 20)*d))
ntree_grid <- seq(50, 400, by = 50)
tmp <- try(conf_CQR_reg(X, Y, split = split, beta_grid, mtry_grid, ntree_grid, method = method, alpha = alpha))
while (class(tmp)=="try-error"){
tmp <- try(conf_CQR_reg(X, Y, split = split, beta_grid, mtry_grid, ntree_grid, method = method, alpha = alpha),silent=TRUE)
}
width_mat[idx, 1] <- tmp$width
cov_mat[idx, 1] <- mean(tmp$pred_set(X0, Y0))
}
par(mfrow <- c(1,2))
width_efcp <- width_vfcp <- sd_width_efcp <- sd_width_vfcp <- NULL
#sd_efcp <- sd_vfcp <- NULL
for(n in nset){
TMP <- width_mat[evaluations[,3] == "efficient", ]
TMP_prime <- TMP[TMP[,3] == n,]
TMP <- width_mat[evaluations[,3] == "valid", ]
TMP_prime_vfcp <- TMP[TMP[,3] == n,]
TMP_prime_vfcp_clean =TMP_prime_vfcp[ TMP_prime_vfcp[,1]<=10^5,1]
width_efcp <- c(width_efcp, mean(TMP_prime[,1] / TMP_prime_vfcp[,1]))
sd_width_efcp <- c(sd_width_efcp, sd(TMP_prime[,1]/ TMP_prime_vfcp[,1])/sqrt(nrep))
#sd_efcp = c(sd_efcp , sd(TMP_prime[,1])/sqrt(nrep) )
width_vfcp <- c(width_vfcp, mean(TMP_prime_vfcp[,1] / TMP_prime_vfcp[,1]))
sd_width_vfcp <- c(sd_width_vfcp, sd(TMP_prime_vfcp[,1]/ TMP_prime_vfcp[,1])/sqrt(nrep))
#sd_vfcp = c(sd_vfcp , sd(TMP_prime_vfcp[,1])/sqrt(nrep) )
}
#plot(dim, width_efcp, type = 'l', ylim = range(c(width_efcp+sd_efcp)), lwd = 2)
plot(nset, width_efcp, type = 'l', ylim =c(-10,25), lwd = 2)
lines(nset, width_efcp - sd_width_efcp, type = 'l', lty = 2, lwd = 2)
lines(nset, width_efcp + sd_width_efcp, type = 'l', lty = 2, lwd = 2)
lines(nset, width_vfcp, type = 'l', ylim = range(c(width_efcp, width_vfcp)), lwd = 2, col = "red")
lines(nset, width_vfcp - sd_width_vfcp, type = 'l', lty = 2, lwd = 2, col = "red")
lines(nset, width_vfcp + sd_width_vfcp, type = 'l', lty = 2, lwd = 2, col = "red")
abline(h = 1)
cov_efcp <- cov_vfcp <-sd_cov_efcp <- sd_cov_vfcp <- NULL
for(n in nset){
TMP <- cov_mat[evaluations[,3] == "efficient", ]
TMP_prime <- TMP[TMP[,3] == n,]
cov_efcp <- c( cov_efcp, mean(TMP_prime[,1] ) )
sd_cov_efcp <- c(sd_cov_efcp, sd(TMP_prime[,1])/sqrt(nrep))
TMP <- cov_mat[evaluations[,3] == "valid", ]
TMP_prime <- TMP[TMP[,3] == n,]
cov_vfcp <- c(cov_vfcp, mean(TMP_prime[,1]))
sd_cov_vfcp <- c(sd_cov_vfcp, sd(TMP_prime[,1])/sqrt(nrep))
}
plot(nset, cov_efcp, type = 'l', ylim = c(0, 1), lwd = 2)
lines(nset, cov_vfcp, type = 'l', col = "red", lwd = 2)
abline(h = 1-alpha)
save(nset,nrep,width_mat, cov_mat, evaluations, width_efcp, sd_cov_efcp, sd_width_efcp,width_vfcp, sd_cov_vfcp,sd_width_vfcp, cov_efcp, cov_vfcp, alpha, file = "pois-100-repetitions.RData" )
Example 3: Conditional coverage and width for EFCP, VFCP and CQR
This output the right panal of Figure 1 in our paper.
df = 3
d = 1 #x is of one dimension
nset = c(400) #number of training sample
x_test = seq(0,5,by=0.2) # a grid of test points for x
alpha = 0.1 #miscoverage level
nrep = 100 #number of independent trials
nrep2 = 100 #number of test samples y for each test prediction sample x
evaluations <- expand.grid(1:nrep, nset, x_test, c("efficient", "valid","CQR"))
no_eval <- nrow(evaluations)
width_mat <- cov_mat <- data.frame(number = rep(0, no_eval),
rep = evaluations[,1],
nset = evaluations[,2],
X_test = evaluations[,3],
method = evaluations[,4])
colnames(width_mat) <- colnames(cov_mat) <- c("number", "rep", "sample size", "test_value","method")
for(idx in 1:nrow(evaluations)){
set.seed(evaluations[idx, 1])
if(idx%%1 == 0){
print(idx)
}
n <- evaluations[idx, 2]
x0 = evaluations[idx, 3]
X = as.matrix(runif(n,0,5))
eps1 = rnorm(n)
eps2 = rnorm(n)
Y = rpois(n,sin(X[,1])^2 +0.1 )+0.03*X[,1]*eps1+25*(runif(n,0,1)<0.01*eps2)
X0 = as.matrix( rep(x0,nrep2) )
eps01 = rnorm(nrep2)
eps02 = rnorm(nrep2)
Y0 = rpois(nrep2,sin(X0)^2 +0.1 )+0.03*X0*eps01+25*(runif(nrep2,0,1)<0.01*eps02)
width_mat[idx,3] <- cov_mat[idx, 3] <- n
method <- evaluations[idx, 4]
#width_mat[idx,5] <- cov_mat[idx, 5] <- method
#width_mat[idx, 2] <- cov_mat[idx, 2] <- evaluations[idx, 1]
if (method =="CQR"){
beta_fixed = 0.05
mtry_fixed = 1
ntree_fixed = 100
tmp = try(conf_CQR_conditional(X, Y, beta_fixed, mtry_fixed, ntree_fixed, alpha = alpha))
while (class(tmp)=="try-error"){
tmp = try(conf_CQR_conditional(X, Y, beta_fixed, mtry_fixed, ntree_fixed, alpha = alpha),silent=TRUE)
}
width_mat[idx, 1] <- mean(tmp$pred_set(X0, Y0)[[2]])
cov_mat[idx, 1] <- mean(tmp$pred_set(X0, Y0)[[1]])
}else{ if(method == "valid"){
split <- c(1/2, 1/2)
} else {
split <- 1/2
}
beta_grid <- seq(1e-03, 4, length = 20)*alpha
mtry_grid <- unique(ceiling(seq(1/10, 1, length = 20)*d))
ntree_grid <- seq(50, 400, by = 50)
tmp = try(conf_CQR_reg_conditional(X, Y, split = split, beta_grid, mtry_grid, ntree_grid, method = method, alpha = alpha))
while (class(tmp)=="try-error"){
tmp = try(conf_CQR_reg_conditional(X, Y, split = split, beta_grid, mtry_grid, ntree_grid, method = method, alpha = alpha),silent=TRUE)
}
width_mat[idx, 1] <- mean(tmp$pred_set(X0, Y0)[[2]])
cov_mat[idx, 1] <- mean(tmp$pred_set(X0, Y0)[[1]])
}
}
par(mfrow = c(1,2))
width_cqr <- sd_width_cqr <- width_efcp <- width_vfcp <- sd_width_efcp <- sd_width_vfcp <- NULL
#sd_efcp <- sd_vfcp <- NULL
for(x in x_test){
TMP <- width_mat[evaluations[,4] == "efficient", ]
TMP_prime <- TMP[TMP[,4] == x,]
TMP <- width_mat[evaluations[,4] == "valid", ]
TMP_prime_vfcp <- TMP[TMP[,4] == x,]
TMP_prime_vfcp_clean =TMP_prime_vfcp[ TMP_prime_vfcp[,1]<=10^5,1]
TMP <- width_mat[evaluations[,4] == "CQR", ]
TMP_prime_cqr <- TMP[TMP[,4] == x,]
width_efcp <- c(width_efcp, mean(TMP_prime[,1] / TMP_prime_vfcp[,1]))
sd_width_efcp <- c(sd_width_efcp, sd(TMP_prime[,1]/ TMP_prime_vfcp[,1])/sqrt(nrep))
#sd_efcp = c(sd_efcp , sd(TMP_prime[,1])/sqrt(nrep) )
width_vfcp <- c(width_vfcp, mean(TMP_prime_vfcp[,1] / TMP_prime_vfcp[,1]))
sd_width_vfcp <- c(sd_width_vfcp, sd(TMP_prime_vfcp[,1]/ TMP_prime_vfcp[,1])/sqrt(nrep))
#sd_vfcp = c(sd_vfcp , sd(TMP_prime_vfcp[,1])/sqrt(nrep) )
width_cqr <- c(width_cqr, mean(TMP_prime_cqr[,1] / TMP_prime_vfcp[,1]))
sd_width_cqr <- c(sd_width_cqr, sd(TMP_prime_cqr[,1]/ TMP_prime_vfcp[,1])/sqrt(nrep))
#sd_vfcp = c(sd_vfcp , sd(TMP_prime_vfcp[,1])/sqrt(nrep) )
}
#plot(dim, width_efcp, type = 'l', ylim = range(c(width_efcp+sd_efcp)), lwd = 2)
plot(x_test, width_efcp, type = 'l', ylim =c(-5,20), lwd = 2)
lines(x_test, width_efcp - sd_width_efcp, type = 'l', lty = 2, lwd = 2)
lines(x_test, width_efcp + sd_width_efcp, type = 'l', lty = 2, lwd = 2)
lines(x_test, width_vfcp, type = 'l', ylim = range(c(width_efcp, width_vfcp)), lwd = 2, col = "red")
lines(x_test, width_vfcp - sd_width_vfcp, type = 'l', lty = 2, lwd = 2, col = "red")
lines(x_test, width_vfcp + sd_width_vfcp, type = 'l', lty = 2, lwd = 2, col = "red")
lines(x_test, width_cqr, type = 'l', ylim = range(c(width_efcp, width_vfcp)), lwd = 2, col = "blue")
lines(x_test, width_cqr - sd_width_vfcp, type = 'l', lty = 2, lwd = 2, col = "blue")
lines(x_test, width_cqr + sd_width_vfcp, type = 'l', lty = 2, lwd = 2, col = "blue")
abline(h = 1)
cov_cqr <-sd_cov_cqr <-cov_efcp <- cov_vfcp <-sd_cov_efcp <- sd_cov_vfcp <- NULL
for(x in x_test){
TMP <- cov_mat[evaluations[,4] == "efficient", ]
TMP_prime <- TMP[TMP[,4] == x,]
cov_efcp <- c( cov_efcp, mean(TMP_prime[,1] ) )
sd_cov_efcp <- c(sd_cov_efcp, sd(TMP_prime[,1])/sqrt(nrep))
TMP <- cov_mat[evaluations[,4] == "valid", ]
TMP_prime <- TMP[TMP[,4] == x,]
cov_vfcp <- c(cov_vfcp, mean(TMP_prime[,1]))
sd_cov_vfcp <- c(sd_cov_vfcp, sd(TMP_prime[,1])/sqrt(nrep))
TMP <- cov_mat[evaluations[,4] == "CQR", ]
TMP_prime <- TMP[TMP[,4] == x,]
cov_cqr <- c(cov_cqr, mean(TMP_prime[,1]))
sd_cov_cqr <- c(sd_cov_cqr, sd(TMP_prime[,1])/sqrt(nrep))
}
plot(x_test, cov_efcp, type = 'l', ylim = c(0, 1), lwd = 2)
lines(x_test, cov_vfcp, type = 'l', col = "red", lwd = 2)
lines(x_test, cov_cqr, type = 'l', col = "blue", lwd = 2)
legend(0,0.2, legend=c("EFCP", "VFCP","CQR"),
col=c("black","red", "blue"), lty=1, cex=0.8)
abline(h = 1-alpha)