MyNixOS website logo
Description

A Partial Clustering Algorithm.

Provide the 'CrossClustering' algorithm (Tellaroli et al. (2016) <doi:10.1371/journal.pone.0152333>), which is a partial clustering algorithm that combines the Ward's minimum variance and Complete Linkage algorithms, providing automatic estimation of a suitable number of clusters and identification of outlier elements.

CrossClustering

R-CMD-check Codecov testcoverage lint CRAN StatusBadge Lifecycle:stable

CrossClustering is a partial clustering algorithm that combines the Ward’s minimum variance and Complete Linkage algorithms, providing automatic estimation of a suitable number of clusters and identification of outlier elements.

Example

This is a basic example which shows you how to the main function, i.e. cc_crossclustering() works:

## basic example code
library(CrossClustering)

#### method = "complete"
data(toy)

### toy is transposed as we want to cluster samples (columns of the original
### matrix)
d <- dist(t(toy), method = "euclidean")

### Run CrossClustering
toyres <- cc_crossclustering(
  d, k_w_min = 2, k_w_max = 5, k2_max = 6, out = TRUE
)
toyres
#> 
#>     CrossClustering with method complete.
#> 
#> Parameter used:
#>   - Interval for the number of cluster of Ward's algorithm: [2, 5].
#>   - Interval for the number of cluster of the complete algorithm: [2, 6].
#>   - Outliers are considered.
#> 
#> Number of clusters found: 3.
#> Leading to an avarage silhouette width of: 0.8405.
#> 
#> A total of 6 elements clustered out of 7 elements considered.

Another useful function worth to mention is ari:

clusters <- iris[-5] |>
 dist() |>
 hclust(method = 'ward.D') |>
 cutree(k = 3)

ground_truth <- iris[[5]] |>
  as.numeric()

table(ground_truth, clusters) |> 
  ari()
#>     Adjusted Rand Index (alpha = 0.05)
#> 
#> ARI                  = 0.76 (moderate recovery)
#> Confidence interval  = [0.74, 0.78]
#> 
#> p-values:
#>   * Qannari test     = < 0.001
#>   * Permutation test =   0.001

Install

CRAN version

CrossClustering package is on CRAN, use the standard method to install it. install_packages('CrossClustering')

develop version

To install the develop branch of CrossClastering package, use:

# install.packages(devtools)
devtools::install_github('CorradoLanera/CrossClustering', ref = 'develop')

Bug reports

If you encounter a bug, please file a reprex (minimal reproducible example) to https://github.com/CorradoLanera/CrossClustering/issues

References

Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. https://doi.org/10.1371/journal.pone.0152333

Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2017). E1829: Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. CMStatistics 2017, London 16-18 December, Book of Abstracts (ISBN 978-9963-2227-4-2)

Metadata

Version

4.1.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows