MyNixOS website logo
Description

Dependent Censoring Regression Models with Cure Fraction.

Cure dependent censoring regression models for long-term survival multivariate data. These models are based on extensions of the frailty models, capable to accommodating the cure fraction and the dependence between failure and censoring times, with Weibull and piecewise exponential marginal distributions. Theoretical details regarding the models implemented in the package can be found in Schneider et al. (2022) <doi:10.1007/s10651-022-00549-0>.

CureDepCens

Cure dependent censoring regression models for long-term survival multivariate data.

Installation

You can install the development version of CureDepCens from GitHub with:

install.packages("devtools")
devtools::install_github("GabrielGrandemagne/CureDepCens")

Example

This is a basic example which shows you how to solve a common problem:

library(devtools)
#> Carregando pacotes exigidos: usethis
library(CureDepCens)
load_all()
#> ℹ Loading CureDepCens
Dogs_MimicData <- Dogs_MimicData
delta_t = ifelse(Dogs_MimicData$cens==1,1,0)
delta_c = ifelse(Dogs_MimicData$cens==2,1,0)

# MEP
fit <- cure_dep_censoring(formula = time ~ x1_cure + x2_cure | x_c1 + x_c2,
                           data = Dogs_MimicData,
                           delta_t = delta_t,
                           delta_c = delta_c,
                           ident = Dogs_MimicData$ident,
                           dist = "mep")
summary_cure(fit)
#> 
#> MEP approach
#> 
#> Name  Estimate    Std. Error  CI INF      CI SUP      p-value     
#> Alpha    2.034930    0.2005083   1.641933    2.427926    3.044e-26   
#> Theta    0.7787554   0.4238412   0.000000    1.609484    
#> 
#> Coefficients Cure:
#> 
#> Name  Estimate    Std. Error  CI INF      CI SUP      p-value     
#> Interc   -0.6976047  0.1781988   -1.046874   -0.3483351  7.141e-33   
#> x1_cur   0.514533    0.1703999   0.1805492   0.8485168   7.419e-18   
#> x2_cur   0.2017428   0.08103922  0.04290593  0.3605797   0.001578    
#> 
#> Coefficients C:
#> 
#> Name  Estimate    Std. Error  CI INF      CI SUP      p-value     
#> x_c1 0.03219111  0.1625781   -0.286462   0.3508442   0.1122  
#> x_c2 -0.318467   0.1609394   -0.6339082  -0.003025754    4.682e-12   
#> 
#> ----------------------------------------------------------------------------------
#> 
#> Information criteria:
#> 
#> AIC   BIC      HQ    
#> 510.9032 574.7666 536.194

Dogs_MimicData is our simulated data frame. For more information check the documentation for stored datasets.

head(Dogs_MimicData)
#>            u          v         t          c      time event int x1_cure
#> 1 0.56788087 0.83359383 0.4131564  0.3614745 0.3614745     0   1       0
#> 2 0.66013804 0.72909631 1.0968927  2.1033648 1.0968927     1   1       1
#> 3 0.06854872 0.63332194       Inf  1.6510975 1.6510975     0   1       1
#> 4 0.88345952 0.57152197 0.6522436  8.6456149 0.6522436     1   1       1
#> 5 0.45431855 0.92452776 0.9258282  0.5216269 0.5216269     0   1       1
#> 6 0.12120571 0.02350277       Inf 10.9070711 5.1121398     0   1       1
#>      x2_cure       x_c1 x_c2 cens ident
#> 1  0.5228382  1.0403070    0    2     1
#> 2 -0.4207129  0.1071675    1    1     2
#> 3 -1.1207319 -1.4042911    0    2     3
#> 4  1.1764416 -0.7740067    1    1     4
#> 5  0.3891404  0.4973770    1    2     5
#> 6  0.5580893 -0.2278904    1    3     6

You can also plot the survival function

plot_cure(fit, scenario = "t")
Metadata

Version

0.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows