MyNixOS website logo
Description

Differential Gene Correlation Analysis.

Performs differential correlation analysis on input matrices, with multiple conditions specified by a design matrix. Contains functions to filter, process, save, visualize, and interpret differential correlations of identifier-pairs across the entire identifier space, or with respect to a particular set of identifiers (e.g., one). Also contains several functions to perform differential correlation analysis on clusters (i.e., modules) or genes. Finally, it contains functions to generate empirical p-values for the hypothesis tests and adjust them for multiple comparisons. Although the package was built with gene expression data in mind, it is applicable to other types of genomics data as well, in addition to being potentially applicable to data from other fields entirely. It is described more fully in the manuscript introducing it, freely available at <doi:10.1186/s12918-016-0349-1>.

Travis-CI Build Status CRAN_Status_Badge Downloads

DGCA

The goal of DGCA is to calculate differential correlations across conditions.

It simplifies the process of seeing whether two correlations are different without having to rely solely on parametric assumptions by leveraging non-parametric permutation tests and adjusting the resulting empirical p-values for multiple corrections using the qvalue R package.

It also has several other options including calculating the average differential correlation between groups of genes, gene ontology enrichment analyses of the results, and differential correlation network identification via integration with MEGENA.

Installation

You can install DGCA from CRAN with:

install.packages("DGCA")

You can install the development version of DGCA from github with:

# install.packages("devtools")
devtools::install_github("andymckenzie/DGCA")

Basic Example

library(DGCA)
data(darmanis); data(design_mat)
ddcor_res = ddcorAll(inputMat = darmanis, design = design_mat, compare = c("oligodendrocyte", "neuron"))
head(ddcor_res, 3)
#   Gene1  Gene2 oligodendrocyte_cor oligodendrocyte_pVal neuron_cor neuron_pVal
# 1 CACYBP   NACA        -0.070261455           0.67509118  0.9567267           0
# 2 CACYBP    SSB        -0.055290516           0.74162636  0.9578999           0
# 3 NDUFB9    SSB        -0.009668455           0.95405875  0.9491904           0
#   zScoreDiff     pValDiff     empPVals pValDiff_adj Classes
# 1  10.256977 1.100991e-24 1.040991e-05    0.6404514     0/+
# 2  10.251847 1.161031e-24 1.040991e-05    0.6404514     0/+
# 3   9.515191 1.813802e-21 2.265685e-05    0.6404514     0/+

Vignettes

There are three vignettes available in order to help you learn how to use the package:

  • DGCA Basic: This will get you going quickly.
  • DGCA: This is a more extended version that explains a bit about how the package works and shows several of the options available in the package.
  • DGCA Modules: This will show you how to use the package to perform module-based and network-based analyses.

The second two vignettes can be found in inst/doc.

Applications

You can view the manuscript describing DGCA in detail as well as several applications here:

  • http://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-016-0349-1

Material for associated simulations and networks created from MEGENA can be found here:

  • https://github.com/andymckenzie/dgca_manuscript.
Metadata

Version

1.0.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows