MyNixOS website logo
Description

Dynamic Multi Environment Phenology-Model.

Mechanistically models/predicts the phenology (macro-phases) of 10 crop plants (trained on a big dataset over 80 years derived from the German weather service (DWD) <https://opendata.dwd.de/>). Can be applied for remote sensing purposes, dynamically check the best subset of available covariates for the given dataset and crop.

DyMEP

DyMEP a Dynamic Multi-Environment Phenology Model. This phenology model allows to model crop phenology according to environmental covariates. One can chose, or ask the model, for the best combination of environmental covariates for a specific crop phenology macro-phase. The model was trained using a large dataset of crop phenology derived from the German weather service (DWD): https://opendata.dwd.de. more details can be found here: DOIs

Available Crops are: -Winter wheat -Winter Rye -Winter Barley -Spring Wheat -Spring Barley -Rapeseed -Oat -Maize -Green Peas -Green Beans

used covariates (daily resolution): - minimal temperature - maximal temperature - mean temperature - SPI (30-days standardized precipitation index) - relative humidity - global radiation - VPD

Example

This is a basic example which shows you how to solve a common problem:

library(DyMEP)
## basic example code
library(DyMEP)
## basic example code
# check what exists
available_phases <- available_crops_and_phases()
# check what covairates are implemented in the model
available_covariates <- available_environmental_covariates()


#what is the best environmental covariates for one or multiple phases?

best_DyMEP_model(env_covariates = c("tas","tasmin","VPD","SPI",
                                    "global_radiation","tasmax","RH"),
                 pheno_phases = c("sowing-emergence","jointing-heading"),
                        crop_abbrev = "WB")


phase_covariate_list <- best_DyMEP_model(env_covariates = c("tas","tasmin",
                                "VPD","SPI","global_radiation","tasmax","RH"),
                 pheno_phases = c("sowing-emergence","emergence-jointing",
                                  "jointing-heading"),
                 crop_abbrev = "WB",
                 output_list_for_prediction = T)

#create a list of wanted phases and corresponding environmental covariates
# we chose the suggested models, but we add the phase emergence-booting as well.
# (Attention, the model will not run if you provide gaps in the phenology!
#it is no problem to run a subset of phases but they need to be consecutive!)
phase_covariate_list <- list("sowing-emergence" = c("tasmin","VPD","SPI"),
                        "emergence-jointing"= c("tas","tasmin","VPD","SPI"),
                     "jointing-heading" = c("global_radiation","tas","SPI"))

#create dummy environmental data
environmental_data <- data.frame("DATE"=seq.Date(from = as.Date("2021-01-01"),
                                              to = as.Date("2022-12-31"),by=1),
                             "tas"=runif(730,min=-10,max=40),
                             "RH"=runif(730,min=0,max=100),
                             "tasmin"=runif(730,min=-10,max=40),
                             "tasmax"=runif(730,min=-10,max=40),
                             "VPD" = runif(730,min=-10,max=40),
                             "SPI"= runif(730,min=-1,max=4),
                             "global_radiation"= runif(730,min=0,max=10000))
# predict phenology, we that the crop was sown at the "2022-01-01" 

pheno_phase_prediction(phase_covariate_list = phase_covariate_list,
                       environmental_data = environmental_data,
                       phase_starting_date =as.Date("2022-01-01"),
                       crop_abbrev = "WR")


detailed_output <- pheno_phase_prediction(phase_covariate_list =
                                            phase_covariate_list,
                       environmental_data = environmental_data,
                       phase_starting_date =as.Date("2022-01-01"),
                       crop_abbrev = "WR",
                       output_type = "detailed_information")


# get overview plot of the prediction
DyMEP_prediction_visualizer(detailed_output)
# check the DRC curves of the used model
DyMEP_DRC_visualizer(detailed_output)

# get summary
summary(detailed_output)



# output are the end dates of the stages (attention in the example
# we use random generated dummy data, the resulting dates are therefore 
# not extremely meaningful)
Metadata

Version

0.1.2

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows