MyNixOS website logo
Description

Empirical Bayesian Elastic Net.

Provides the Empirical Bayesian Elastic Net for handling multicollinearity in generalized linear regression models. As a special case of the 'EBglmnet' package (also available on CRAN), this package encourages a grouping effects to select relevant variables and estimate the corresponding non-zero effects.

Empirical Bayesian Elastic Net (EBEN) for Generalized Linear Models

CRAN_Status_Badge

We provide extremely efficient procedures for fitting the empirical Bayesian methods with lasso and elastic net hierarchical priors for linear regression (gaussian), and logistic regression (binomial) models. EBEN is a sister package to EBglmnet (available in CRAN). Both packages share key features include:

  • sparse variable selection and effect estimation via generalized linear regression models;
  • high dimensionality with p>>n; and
  • significance test (with output of p-value) for nonzero effects; and
  • closed-form solution for Bayesian variance estimation in an iterative cooridinate descent algorithm estimating the Bayesian means.

The implementation enables extremely efficient computation comparable with that of glmnet package.

When you need EBEN

While EBglmnet offers generic functions for a broad range of use cases, EBEN takes care of the following special cases:

  • two-way interaction terms (epistasis) are included with epis = TRUE: for input independent parameter X with n x p dimension, the functions will evaluate p(p-1)/2 additional parameters;
  • group Empirical Bayesian Lasso are avaiable with group = TRUE: the penalty parameter for the group of p(p-1)/2 parameters are weighted with group size in comparing with the group origin p variables.

Further readings

Details may be found in Huang A. and Liu D (2016), Huang A., Xu S., and Cai X. (2015), Huang A. (2014), Huang A., Xu S., and Cai X. (2013), and Cai X., Huang A., and Xu S., (2011).

Version notes

Version 5.1 is a major release with several new features, including:

  • group Empirical Bayesian Lasso (EBlasso) and built-in two-way interaction support moved to EBEN package.
  • BLAS/Lapack routines are updated according to R-API change.

References

Huang A., Liu D., (2016)
EBglmnet: a comprehensive R package for sparse generalized linear regression models
Bioinformatics, Volume 37, Issue 11, Pages 1627–1629

Huang A., Xu S., and Cai X. (2015).
Empirical Bayesian elastic net for multiple quantitative trait locus mapping.
Heredity, Vol. 114(1), 107-115.

Huang A. (2014)
Sparse Model Learning for Inferring Genotype and Phenotype Associations.
Ph.D Dissertation, University of Miami, Coral Gables, FL, USA.

Huang A., Xu S., and Cai X. (2013).
Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping.
BMC Genetics, 14(1),5.

Cai X., Huang A., and Xu S., (2011).
Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping.
BMC Bioinformatics, 12(1),211.

Metadata

Version

5.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows