MyNixOS website logo
Description

Conducting the Peak Fitting Based on the EM Algorithm.

The peak fitting of spectral data is performed by using the frame work of EM algorithm. We adapted the EM algorithm for the peak fitting of spectral data set by considering the weight of the intensity corresponding to the measurement energy steps (Matsumura, T., Nagamura, N., Akaho, S., Nagata, K., & Ando, Y. (2019, 2021 and 2023) <doi:10.1080/14686996.2019.1620123>, <doi:10.1080/27660400.2021.1899449> <doi:10.1080/27660400.2022.2159753>. The package efficiently estimates the parameters of Gaussian mixture model during iterative calculation between E-step and M-step, and the parameters are converged to a local optimal solution. This package can support the investigation of peak shift with two advantages: (1) a large amount of data can be processed at high speed; and (2) stable and automatic calculation can be easily performed.

EMpeaksR

The goal of EMpeaks is to efficiently perform the peak fitting on a large number of spectral data. The EMpeaks can support the investigation of peak fitting with two advantages: (1) a large amount of data can be processed at high speed; and (2) stable and automatic calculation can be easily performed.

In version 0.2.0, (1) Lorentz mixture model, (2) Pseudo-Voigt mixture model, and (3) Doniach-Sunjic-Gauss mixture model are available for peak fitting. As these models are generally used in spectroscopy, applicability of the EMpeaksR package is expanded.

In version 0.3.0, the pseudo-Voigt mixture model with a linear background model is available for peak fitting. This model enables background subtraction and peak fitting in the one-shot calculation. As the linear background is generally used in spectroscopy, the applicability of EMpeaksR packages is expanded.

In version 0.3.1, we have fixed a bug in that unintended plots were output in show_pvmm_lback_curve().

Installation

You can install the released version of EMpeaksR from CRAN with:

install.packages("EMpeaksR")

Example

This is a basic example which shows you how to solve a common problem:

library(EMpeaksR)
#generating the synthetic spectral data based on three component Gausian mixture model.
x               <- seq(0, 100, by = 0.5)
true_mu         <- c(35, 50, 65)
true_sigma      <- c(3, 3, 3)
true_mix_ratio  <- rep(1/3, 3)
degree          <- 4

y <- c(true_mix_ratio[1] * dnorm(x = x, mean = true_mu[1], sd = true_sigma[1])*10^degree +
       true_mix_ratio[2] * dnorm(x = x, mean = true_mu[2], sd = true_sigma[2])*10^degree +
       true_mix_ratio[3] * dnorm(x = x, mean = true_mu[3], sd = true_sigma[3])*10^degree)

plot(y~x, main = "genrated synthetic spectral data")

#Peak fitting by EMpeaksR
#Initial values
K <- 3

mix_ratio_init  <- c(0.2, 0.4, 0.4)
mu_init         <- c(20, 40, 70)
sigma_init      <- c(2, 5, 4)

#Coducting calculation
SP_EM_G_res <- spect_em_gmm(x, y, mu = mu_init, sigma = sigma_init, mix_ratio = mix_ratio_init,
                            conv.cri = 1e-8, maxit = 100000)

#Plot fitting curve and trace plot of parameters
show_gmm_curve(SP_EM_G_res, x, y, mix_ratio_init, mu_init, sigma_init)

#Showing the result of spect_em_gmm()
print(cbind(c(mu_init), c(sigma_init), c(mix_ratio_init)))
print(cbind(SP_EM_G_res$mu, SP_EM_G_res$sigma, SP_EM_G_res$mix_ratio))
print(cbind(true_mu, true_sigma, true_mix_ratio))

Moreover, this is an example which shows you how to solve a problem using Lorentz mixture model:

#generating the synthetic spectral data based on three component Lorentz mixture model.
x               <- seq(0, 100, by = 0.5)
true_mu         <- c(35, 50, 65)
true_gam        <- c(3, 3, 3)
true_mix_ratio  <- rep(1/3, 3)
degree          <- 4

#Normalized Lorentz distribution
dCauchy <- function(x, mu, gam) {
    (dcauchy(x, mu, gam)) / sum(dcauchy(x, mu, gam))
  }

y <- c(true_mix_ratio[1] * dCauchy(x = x, mu = true_mu[1], gam = true_gam[1])*10^degree +
       true_mix_ratio[2] * dCauchy(x = x, mu = true_mu[2], gam = true_gam[2])*10^degree +
       true_mix_ratio[3] * dCauchy(x = x, mu = true_mu[3], gam = true_gam[3])*10^degree)

plot(y~x, main = "genrated synthetic spectral data")

#Peak fitting by EMpeaksR
#Initial values
K <- 3

mix_ratio_init  <- c(0.2, 0.4, 0.4)
mu_init         <- c(20, 40, 70)
gam_init        <- c(2, 5, 4)

#Coducting calculation
SP_ECM_L_res <- spect_em_lmm(x, y, mu = mu_init, gam = gam_init, mix_ratio = mix_ratio_init,
                             conv.cri = 1e-8, maxit = 100000)

#Plot fitting curve and trace plot of parameters
show_lmm_curve(SP_ECM_L_res, x, y, mix_ratio_init, mu_init, gam_init)

#Showing the result of spect_em_lmm()
print(cbind(c(mu_init), c(gam_init), c(mix_ratio_init)))
print(cbind(SP_ECM_L_res$mu, SP_ECM_L_res$gam, SP_ECM_L_res$mix_ratio))
print(cbind(true_mu, true_gam, true_mix_ratio))

Metadata

Version

0.3.1

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows