MyNixOS website logo
Description

Quantify Compositional Variability Across Relative Abundance Vectors.

Implements the statistic FAVA, an Fst-based Assessment of Variability across vectors of relative Abundances, as well as a suite of helper functions which enable the visualization and statistical analysis of relative abundance data. The 'FAVA' R package accompanies the paper, “Quantifying compositional variability in microbial communities with FAVA” by Morrison, Xue, and Rosenberg (2024) <doi:10.1101/2024.07.03.601929>.

FAVA

The FAVA R package implements the statistic FAVA, an $F_{ST}$-based Assessment of Variability across vectors of relative Abundances, as well as a suite of helper functions which enable the visualization and statistical analysis of relative abundance data. The FAVA R package accompanies the paper, “Quantifying compositional variability in microbial communities with FAVA” by Morrison et al. (2024).

The FAVA R package includes the following core functions:

  • fava: Quantify variability across many compositional vectors in a single, normalized index, called FAVA

  • bootstrap_fava: Compare values of FAVA between pairs of abundance matrices

  • window_fava: Compute FAVA in sliding windows along the rows of a relative abundance matrix

  • plot_relabund: Visualize a relative abundance matrix as a stacked bar plot

Installation

Install FAVA with:

install.packages("FAVA")

You can install the development version of FAVA from GitHub with:

# First, install devtools if you haven't already:
# install.packages("devtools")

devtools::install_github("MaikeMorrison/FAVA")

# If you wish to access the tutorial (also accessible below) from within
# the package:

devtools::install_github("MaikeMorrison/FAVA", build_vignettes = TRUE)

Tutorial

The package website, maikemorrison.github.io/FAVA/, contains documentation and examples for all package functions. It also contains a tutorial on the usage of FAVA for the analysis of microbiome data. The tutorial vignette is available at this link.

Metadata

Version

1.0.7

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows