MyNixOS website logo
Description

Fit Univariate Mixed and Usual Distributions.

Extends the fitdist() (from 'fitdistrplus') adding the Anderson-Darling ad.test() (from 'ADGofTest') and Kolmogorov Smirnov Test ks.test() inside, trying the distributions from 'stats' package by default and offering a second function which uses mixed distributions to fit, this distributions are split with unsupervised learning, with Mclust() function (from 'mclust').

FitUltD

The goal of FitUltD is to fit data that can’t be fitted with ordinary density functions

Installation

You can install the released version of FitUltD from CRAN with:

install.packages(“FitUltD”)

Example

This is a basic example which shows you how to fit a multimodal random variable:

library(FitUltD)
#> Loading required package: mclust
#> Package 'mclust' version 5.4.5
#> Type 'citation("mclust")' for citing this R package in publications.
#random Variable
RV<-c(rnorm(73,189,12),rweibull(82,401,87),rgamma(90,40,19))

FIT1<-FDistUlt(RV, plot=TRUE, subplot = TRUE)
#> <simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
#> <simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, pdistnam = pdistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>

What is special about using README.Rmd instead of just README.md? You can include R chunks like so:

FIT1[[3]]
#>                    Distribucion  Prop_dist    AD_p.v    KS_p.v Chs_p.v
#> AD6         lnorm(5.242, 0.052) 0.29795918 0.8372311 0.8985857       0
#> AD8    weibull(434.484, 86.552) 0.09387755 0.8861584 0.7938189       0
#> AD2  gamma(497882.65, 5721.237) 0.24081633 0.7523182 0.7705192       0
#> AD61        lnorm(0.722, 0.162) 0.36734694 0.9807500 0.9616154       0

You’ll still need to render README.Rmd regularly, to keep README.md up-to-date.

You can also embed plots, for example:

Metadata

Version

3.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows