MyNixOS website logo
Description

Forecastable Component Analysis.

Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply 'ForeCA' to multivariate time series data. 'ForeCA' is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as 'PCA' or 'ICA', 'ForeCA' takes time dependency explicitly into account and searches for the most ''forecastable'' signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.

ForeCA R package

ForeCA implements Forecastable component analysis in R. For details on algorithm & methodology see Forecastable Component Analysis, JMLR, Goerg (2013).

In a nutshell:ForeCA finds linear combinations of multivariate time series that are most forecastable, where forecastability is measured by the spectral entropy of the resulting signal (linear combination of input).

Installation

UPDATE: As of 2020-06-09 ForeCA has been removed from CRAN, because the ifultools / sapa dependecies are no longer maintained. I am working on an update to ForeCA to not rely on these packages, but only rely on astsa for multivariate specturm estimation. See NEWS.md for details.

In the meantime you can install the ForeCA package directly from github as

library(devtools)
devtools::install_github("gmgeorg/ForeCA")

Temporarily not working

You can install the stable version on CRAN:

install.packages('ForeCA')

Usage

The workhorse function is ForeCA::foreca() which works just like the built-in princomp function for PCA.

library(ForeCA)
citation("ForeCA")

For a tutorial on how to use foreca() and the entire ForeCA suite of functions see the introductory vignette on CRAN.

References

Metadata

Version

0.2.7

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows