MyNixOS website logo
Description

Model-Free Functional Chi-Squared and Exact Tests.

Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer 'NMSUSongLab' in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests.

Project Status: Active – The project has reached a stable, usable state and is being actively developed. CRAN_Status_Badge CRAN_latest_release_date metacran downloads metacran downloads

Overview

The package provides statistical hypothesis testing methods for inferring model-free functional dependency. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. The test significance is based on either asymptotic chi-squared or exact distributions.

The tests include an asymptotic functional chi-squared test [@zhang2013deciphering], an adapted functional chi-squared test [@Kumar2022AFT], and an exact functional test [@zhong2019eft;@Nguyen2020EFT]. The normalized functional chi-squared test was used by Best Performer NMSUSongLab in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al., 2016) <10.1038/nmeth.3773>.

To measure the effect size, one can use the asymmetric function index [@Zhong2019FANTOM5;@KumarZSLS18]. Its value is minimized to 0 by perfectly independent patterns and maximized to 1 by perfect non-constant functions.

A simulator [@sharma2017simulating] can generate functional, non-functional, and independent patterns as contingency tables. The simulator provides options to control row and column marginal distributions and the noise level.

When to use the package

Tests in this package can be used to reveal evidence for causality based on the causality-by-functionality principle. They target model-free inference without assuming a parametric model. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed. Data can be first discretized, e.g., by R packages 'Ckmeans.1d.dp' or 'GridOnClusters'. For categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests. They are a better alternative to conditional entropy in many aspects.

To download and install the package

install.packages("FunChisq")

Citing the package.

Metadata

Version

2.5.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows