MyNixOS website logo
Description

Non-Local Prior Based Iterative Variable Selection Tool for Genome-Wide Association Studies.

Performs variable selection with data from Genome-wide association studies (GWAS), or other high-dimensional data with continuous, binary or survival outcomes, combining in an iterative framework the computational efficiency of the structured screen-and-select variable selection strategy based on some association learning and the parsimonious uncertainty quantification provided by the use of non-local priors (see Sanyal et al., 2019 <DOI:10.1093/bioinformatics/bty472>).

GWASinlps: Non-local Prior Based Iterative Variable Selection Tool for Genome-Wide Association Studies

CRANstatus CodeFactor R-CMD-check

GWASinlps performs Bayesian non-local prior based iterative variable selection for data from genome-Wide association studies (GWAS), or other high-dimensional data, as described in Sanyal et al. (2019).

Installation

Install from CRAN

install.packages("GWASinlps")

Install from GitHub

# install.packages("devtools")
devtools::install_github("nilotpalsanyal/GWASinlps")

The main function:

GWASinlps() is the main function which accepts continuous or binary data (such as phenotype data) and a matrix with the independent variable values (SNP genotypes). The function also needs as input values for scaling parameter of the selected non-local prior and the tuning paramters. These should be fixed based on exploratory study and/or subject-specific heuristics. For example, in GWAS analysis, as the GWAS effect sizes are generally very small (typical effect size of a SNP is around 0.05% of the total phenotypic variance for quantitative traits), the scaling parameter can be chosen such that the non-local prior allows at least 1% chance of a standardized effect size being 0.05 or less in absolute value. Such estimates of the scaling parameter for the MOM and iMOM priors are 0.022 and 0.008, respectively.

Here is a simple illistration of the use the GWASinlps() function for both continous and binary phenotypes.

GWASinlps analysis with continuous data/phenotypes

library(GWASinlps)
#> Loading required package: mombf
#> Loading required package: mvtnorm
#> Loading required package: ncvreg
#> Loading required package: mgcv
#> Loading required package: nlme
#> This is mgcv 1.8-40. For overview type 'help("mgcv-package")'.
#> Loading required package: fastglm
#> Loading required package: bigmemory
#> 
#>  Welcome to GWASinlps! Select well.
#>  
#>  Website: https://nilotpalsanyal.github.io/GWASinlps/
#>  Bug report: https://github.com/nilotpalsanyal/GWASinlps/issues

# Generate design matrix (genotype matrix)
n = 200   #number of subjects
p = 10000 #number of variables/SNPs
m = 10    #number of true variables/causal SNPs
set.seed(1) 
f = runif( p, .1, .2 )  #simulate minor allele frequency
x = matrix(nrow = n, ncol = p)
for(j in 1:p)
  x[,j] = rbinom(n, 2, f[j])  #simulate genotypes
colnames(x) = 1:p


# Generate true effect sizes
causal_snps = sample(1:p, m)
beta = rep(0, p)
beta[causal_snps] = rnorm(m, mean = 0, sd = 2 )


# Generate continuous (phenotype) data
y = x %*% beta + rnorm(n, 0, 1) 


# GWASinlps analysis
inlps <- GWASinlps(y, x, family="normal", prior="mom", tau=0.2, 
          k0=1, m=50, rxx=0.2)
#> =================================
#> Number of selected variables: 9
#> Time taken: 0.04 min
#> =================================


# LASSO analysis
library(glmnet)
#> Loading required package: Matrix
#> Loaded glmnet 4.1-4
fit.cvlasso = cv.glmnet( x, y, alpha = 1 )
l.min = fit.cvlasso $lambda.min # lambda that gives minimum cvm
l.1se = fit.cvlasso $lambda.1se  # largest lambda such that error is 
                                 # within 1 se of the minimum

lasso_min = which( as.vector( coef( fit.cvlasso, s = l.min ) )[-1] != 0 )
lasso_1se = which( as.vector( coef( fit.cvlasso, s = l.1se ) )[-1] != 0 )


# Compare results
library(kableExtra)

res = matrix(nrow=3,ncol=3)
res[1,] = c(length(inlps$selected), length(intersect(inlps$selected, causal_snps)), length(setdiff(causal_snps, inlps$selected)) )
res[2,] = c(length(lasso_min), length(intersect(lasso_min, causal_snps)), length(setdiff(causal_snps, lasso_min)))
res[3,] = c(length(lasso_1se), length(intersect(lasso_1se, causal_snps)), length(setdiff(causal_snps, lasso_1se)))
colnames(res) = c("#Selected SNPs","#True positive","#False negative")
rownames(res) = c("GWASinlps", "LASSO min", "LASSO 1se")

kableExtra::kable(res, format="html", 
                  table.attr= "style='width:60%;'", 
                  caption=paste("<center>Variable selection from", p, " SNPs with", m, " causal SNPs for continuous phenotypes from", n, " subjects</center>"),
                  escape=FALSE) %>% 
  kableExtra::kable_styling() 
Variable selection from 10000 SNPs with 10 causal SNPs for continuous phenotypes from 200 subjects
\#Selected SNPs \#True positive \#False negative
GWASinlps 9 8 2
LASSO min 190 8 2
LASSO 1se 44 8 2

GWASinlps analysis with binary data/phenotypes

library(GWASinlps)

# Generate design matrix (genotype matrix)
n = 500   #number of subjects
p = 2000  #number of variables/SNPs
m = 10    #number of true variables/SNPs
set.seed(1) 
f = runif( p, .1, .2 )  #simulate minor allele frequency
x = matrix(nrow = n, ncol = p)
for(j in 1:p)
  x[,j] = rbinom(n, 2, f[j])  #simulate genotypes
colnames(x) = 1:p


# Generate true effect sizes
causal_snps = sample(1:p, m)
beta = rep(0, p)
beta[causal_snps] = rnorm(m, mean = 0, sd = 2 )


# Generate binary (phenotype) data
prob = exp(x %*% beta)/(1 + exp(x %*% beta))
y = sapply(1:n, function(i)rbinom(1,1,prob[i]) )


# GWASinlps analysis
mode(x) = "double"  #needed for fastglm() function below
mmle_xy = apply( x, 2, function(z) coef( fastglm(y=y, 
                                                 x=cbind(1,matrix(z)), family = binomial(link = "logit")) )[2] ) 
#pre-compute MMLEs of betas as it takes time

inlps_rigorous <- GWASinlps(y, x, family="binomial", method="rigorous",
                            mmle_xy=mmle_xy, prior="mom", tau=0.2, k0=1, m=50, rxx=0.2)
#> =================================
#> Number of selected variables: 4
#> Time taken: 0.33 min
#> =================================

inlps_quick <- GWASinlps(y, x, family="binomial", method="quick",
                         mmle_xy=mmle_xy, prior="mom", tau=0.2, k0=1, m=50, rxx=0.2)
#> =================================
#> Number of selected variables: 8
#> Time taken: 0 min
#> =================================


# Lasso analysis
library(glmnet)
fit.cvlasso = cv.glmnet( x, y, family = "binomial", alpha = 1 )
l.min = fit.cvlasso $lambda.min # lambda that gives minimum cvm
l.1se = fit.cvlasso $lambda.1se  # largest lambda such that error is 
# within 1 se of the minimum

lasso_min = which( as.vector( coef( fit.cvlasso, s = l.min ) )[-1] != 0 )
lasso_1se = which( as.vector( coef( fit.cvlasso, s = l.1se ) )[-1] != 0 )


# Compare results
library(kableExtra)
res = matrix(nrow=4,ncol=3)
res[1,] = c(length(inlps_rigorous$selected), length(intersect(inlps_rigorous$selected, causal_snps)), length(setdiff(causal_snps, inlps_rigorous$selected)) )
res[2,] = c(length(inlps_quick$selected), length(intersect(inlps_quick$selected, causal_snps)), length(setdiff(causal_snps, inlps_quick$selected)) )
res[3,] = c(length(lasso_min), length(intersect(lasso_min, causal_snps)), length(setdiff(causal_snps, lasso_min)))
res[4,] = c(length(lasso_1se), length(intersect(lasso_1se, causal_snps)), length(setdiff(causal_snps, lasso_1se)))
colnames(res) = c("#Selected SNPs","#True positive","#False negative")
rownames(res) = c("GWASinlps rigorous", "GWASinlps quick", "LASSO min", "LASSO 1se")

kableExtra::kable(res, format="html", 
                  table.attr= "style='width:60%;'", 
                  caption=paste("<center>Variable selection from", p, " SNPs with", m, " causal SNPs for binary phenotypes from", n, " subjects</center>"),
                  escape=FALSE) %>% 
  kableExtra::kable_styling() 
Variable selection from 2000 SNPs with 10 causal SNPs for binary phenotypes from 500 subjects
\#Selected SNPs \#True positive \#False negative
GWASinlps rigorous 4 4 6
GWASinlps quick 8 4 6
LASSO min 20 5 5
LASSO 1se 6 4 6

References:

Nilotpal Sanyal, Min-Tzu Lo, Karolina Kauppi, Srdjan Djurovic, Ole A. Andreassen, Valen E. Johnson, and Chi-Hua Chen. “GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies.” Bioinformatics 35, no. 1 (2019): 1-11. <span target="_blank">https://doi.org/10.1093/bioinformatics/bty472></span.

Metadata

Version

2.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows