Description
Imports Datasets from BCB (Central Bank of Brazil) using Its Official API.
Description
Downloads and organizes datasets using BCB's API <https://www.bcb.gov.br/>. Offers options for caching with the 'memoise' package and , multicore/multisession with 'furrr' and format of output data (long/wide).
README.md
Motivation
The Central Bank of Brazil (BCB) offers access to its SGS system (sistema gerenciador de series temporais) with a official API available here.
Package GetBCBData offers a R interface to the API and many other advantages:
- Use of a caching system with package
memoise
to speed up repeated requests of data; - User can utilize all cores of the machine (parallel computing) when fetching a large batch of time series;
- Error handling internally. Even if requested series does not exist, the function will still return all results.
Installation
# CRAN (official release)
install.packages('GetBCBData')
# Github (dev version)
devtools::install_github('msperlin/GetBCBData')
A simple example
library(GetBCBData)
library(tidyverse)
my.countries <- c('Germany', 'Canada', 'USA',
'France', 'Italy', 'Japan')
my.ids <- c(3785:3790)
names(my.ids) <- paste0('Unemp. rate - ', my.countries)
df.bcb <- gbcbd_get_series(id = my.ids ,
first.date = '2000-01-01',
last.date = Sys.Date(),
format.data = 'long',
#series.name = 'ABC',
use.memoise = TRUE,
cache.path = tempdir(), # use tempdir for cache folder
do.parallel = FALSE)
glimpse(df.bcb)
p <- ggplot(df.bcb, aes(x = ref.date, y = value) ) +
geom_line() +
labs(title = 'Unemploymnent Rates Around the World',
subtitle = paste0(min(df.bcb$ref.date), ' to ', max(df.bcb$ref.date)),
x = '', y = 'Percentage*100') + facet_wrap(~series.name)
print(p)