MyNixOS website logo
Description

Imports Datasets from BCB (Central Bank of Brazil) using Its Official API.

Downloads and organizes datasets using BCB's API <https://www.bcb.gov.br/>. Offers options for caching with the 'memoise' package and , multicore/multisession with 'furrr' and format of output data (long/wide).

Motivation

The Central Bank of Brazil (BCB) offers access to its SGS system (sistema gerenciador de series temporais) with a official API available here.

Package GetBCBData offers a R interface to the API and many other advantages:

  • Use of a caching system with package memoise to speed up repeated requests of data;
  • User can utilize all cores of the machine (parallel computing) when fetching a large batch of time series;
  • Error handling internally. Even if requested series does not exist, the function will still return all results.

Installation

# CRAN (official release)  
install.packages('GetBCBData')

# Github (dev version)
devtools::install_github('msperlin/GetBCBData')

A simple example

library(GetBCBData)
library(tidyverse)

my.countries <- c('Germany', 'Canada', 'USA', 
                  'France', 'Italy', 'Japan')

my.ids <- c(3785:3790)

names(my.ids) <- paste0('Unemp. rate - ', my.countries)

df.bcb <- gbcbd_get_series(id = my.ids ,
                       first.date = '2000-01-01',
                       last.date = Sys.Date(),
                       format.data = 'long',
                       #series.name = 'ABC',
                       use.memoise = TRUE, 
                       cache.path = tempdir(), # use tempdir for cache folder
                       do.parallel = FALSE)

glimpse(df.bcb)

p <- ggplot(df.bcb, aes(x = ref.date, y = value) ) +
  geom_line() + 
  labs(title = 'Unemploymnent Rates Around the World', 
       subtitle = paste0(min(df.bcb$ref.date), ' to ', max(df.bcb$ref.date)),
       x = '', y = 'Percentage*100') + facet_wrap(~series.name)
  

print(p)
Metadata

Version

0.7.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows