MyNixOS website logo
Description

High-Dimensional Changepoint Detection.

Efficient implementations of the following multiple changepoint detection algorithms: Efficient Sparsity Adaptive Change-point estimator by Moen, Glad and Tveten (2023) <doi:10.48550/arXiv.2306.04702> , Informative Sparse Projection for Estimating Changepoints by Wang and Samworth (2017) <doi:10.1111/rssb.12243>, and the method of Pilliat et al (2023) <doi:10.1214/23-EJS2126>.

High-Dimensional Change-point Detection

HDCD contains efficient implementations of several multiple change-point detection algorithms, including Efficient Sparsity Adaptive Change-point estimator (ESAC) and Informative sparse projection for estimating change-points (Inspect).

Installation

You can install the development version of HDCD from GitHub with:

# install.packages("devtools")
devtools::install_github("peraugustmoen/HDCD")

Example

This is a basic example which shows you how to run ESAC:

library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point (at location \eta = 25):
X[1:5, 26:n] = X[1:5, 26:n] +2

# Vanilla ESAC:
res = ESAC(X)
res$changepoints
#> [1] 25

# Manually setting leading constants for \lambda(t) and \gamma(t)
res = ESAC(X,
           threshold_d = 2, threshold_s = 2, #leading constants for \lambda(t)
           threshold_d_test = 2, threshold_s_test = 2 #leading constants for \gamma(t)
)
res$changepoints #estimated change-point locations
#> [1] 25

# Empirical choice of thresholds:
res = ESAC(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints
#> [1] 25


# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints
#> [1] 25
Metadata

Version

1.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows