MyNixOS website logo
Description

Multivariate Joint Modeling for Longitudinal and Time-to-Event Outcomes with 'INLA'.

Estimation of joint models for multivariate longitudinal markers (with various distributions available) and survival outcomes (possibly accounting for competing risks) with Integrated Nested Laplace Approximations (INLA). The flexible and user friendly function joint() facilitates the use of the fast and reliable inference technique implemented in the 'INLA' package for joint modeling. More details are given in the help page of the joint() function (accessible via ?joint in the R console) and the vignette associated to the joint() function (accessible via vignette("INLAjoint") in the R console).

INLAjoint

Joint modeling multivariate longitudinal and time-to-event outcomes with INLA

INLAjoint is a package that fits joint models for multivariate longitudinal markers (with various distributions available) and survival outcomes (possibly accounting for competing risks and multi-state) with Integrated Nested Laplace Approximations (INLA). The flexible and user friendly function joint() facilitates the use of the fast and reliable inference technique implemented in INLA package for joint modeling. More details are given in the help page of the joint function (accessible via ?joint in the R console), the vignette associated to the joint() function (accessible via vignette("INLAjoint") in the R console).

Install

install.packages("R.rsp") # (only for the vignette)

devtools::install_github('DenisRustand/INLAjoint', build_vignettes = TRUE)

Note that INLA is required, you can install it with: install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE)

More details at https://www.r-inla.org/download-install

Finally, it is possible to use this package with pardiso, which provides a high performance computing environment with parallel computing support using OpenMP (not avail. on windows). See https://pardiso-project.org/r-inla/ for more informations.

Contact: [email protected]

References:

  • Rustand, D., van Niekerk, J., Krainski, E. T., & Rue, H. (2024). Joint Modeling of Multivariate Longitudinal and Survival Outcomes with the R package INLAjoint. arXiv preprint arXiv:2402.08335. https://arxiv.org/abs/2402.08335

  • Rustand, D., van Niekerk, J., Krainski, E. T., Rue, H., & Proust-Lima, C. (2023). Fast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations. Biostatistics, kxad019. https://doi.org/10.1093/biostatistics/kxad019

  • Alvares, D., van Niekerk, J., Krainski, E. T., Rue, H., & Rustand, D. (2022). Bayesian survival analysis with INLA. arXiv preprint arXiv:2212.01900. https://arxiv.org/abs/2212.01900

Metadata

Version

24.3.25

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows