MyNixOS website logo
Description

Spatial and Spatio-Temporal Models using 'INLA'.

Prepare objects to implement models over spatial and spacetime domains with the 'INLA' package (<https://www.r-inla.org>). These objects contain data to for the 'cgeneric' interface in 'INLA', enabling fast parallel computations. We implemented the spatial barrier model, see Bakka et. al. (2019) <doi:10.1016/j.spasta.2019.01.002>, and some of the spatio-temporal models in Lindgren et. al. (2023) <doi:10.48550/arXiv.2006.04917>. Details are provided in the available vignettes and from the URL bellow.

INLAspacetime

CRANStatus checkno-suggestions check pkgdown

This is a R package to implement certain spatial and spatio-temporal models taking use to the cgeneric interface in the INLA package. This interface is a way to implement models by writing C code to build the precision matrix compiling it so that INLA can use it internally.

Installation

You can install the current CRAN version of INLAspacetime:

install.packages("INLAspacetime")

You can install the latest version of INLAspacetime from GitHub with

## install.packages("remotes")
remotes::install_github("eliaskrainski/INLAspacetime",  build_vignettes=TRUE)

We have implemented

  1. some of the models presented in https://arxiv.org/abs/2006.04917

  2. the barrier model proposed in https://doi.org/10.1016/j.spasta.2019.01.002

Example

This is a basic example which fit a spacetime model for some fake data. The model fitting using inlabru facilitates coding.

set.seed(1)
n <- 5
dataf <- data.frame(
    s1   = runif(n, -1, 1),
    s2   = runif(n, -1, 1),
    time = runif(n, 1, 4),
    y    = rnorm(n, 0, 1))
str(dataf)
#> 'data.frame':    5 obs. of  4 variables:
#>  $ s1  : num  -0.469 -0.256 0.146 0.816 -0.597
#>  $ s2  : num  0.797 0.889 0.322 0.258 -0.876
#>  $ time: num  1.62 1.53 3.06 2.15 3.31
#>  $ y   : num  -0.00577 2.40465 0.76359 -0.79901 -1.14766

Loading the packages:

library(INLA)
#> Loading required package: Matrix
#> Loading required package: foreach
#> Loading required package: parallel
#> Loading required package: sp
#> The legacy packages maptools, rgdal, and rgeos, underpinning this package
#> will retire shortly. Please refer to R-spatial evolution reports on
#> https://r-spatial.org/r/2023/05/15/evolution4.html for details.
#> This package is now running under evolution status 0
#> This is INLA_23.05.30-1 built 2023-05-30 11:52:19 UTC.
#>  - See www.r-inla.org/contact-us for how to get help.
#>  - To enable PARDISO sparse library; see inla.pardiso()
library(INLAspacetime)
library(inlabru)

Define spatial and temporal discretization meshes

smesh <- inla.mesh.2d(
  loc = cbind(0,0), 
  max.edge = 5, 
  offset = 2)
tmesh <- inla.mesh.1d(
  loc = 0:5)

Define the spacetime model object to be used

stmodel <- stModel.define(
    smesh = smesh, ## spatial mesh
    tmesh = tmesh, ## temporal mesh
    model = '121', ## model, see the paper
    control.priors = list(
        prs = c(1, 0.1), ## P(spatial range < 1) = 0.1
        prt = c(5, 0), ## temporal range fixed to 5
        psigma = c(1, 0.1) ## P(sigma > 1) = 0.1
        )
    )

Define the data model: the linear predictor terms

linpred <- ~ 1 +
    field(list(space = cbind(s1, s2), 
               time = time),
          model = stmodel)

Setting the likelihood

ctrlf <- list(
  hyper = list(
    prec = list(
      initial = 10, 
      fixed = TRUE)    
  )
)
datalike <- like(
  formula = y ~ ., 
  family = "gaussian",
  control.family = ctrlf, 
  data=dataf)

Fitting

result <- 
  bru(
    components = linpred,
    datalike,
    options = list(
      control.inla = list(
        int.strategy = "eb"
        ),
      verbose = !TRUE)
    )
#> Warning in inla.model.properties.generic(inla.trim.family(model), mm[names(mm) == : Model 'cgeneric' in section 'latent' is marked as 'experimental'; changes may appear at any time.
#>   Use this model with extra care!!! Further warnings are disabled.

Summary of the model parameters

result$summary.fixed
#>                mean      sd 0.025quant  0.5quant 0.975quant      mode kld
#> Intercept 0.5211454 3.49482  -6.328575 0.5211454   7.370866 0.5211454   0
result$summary.hyperpar
#>                      mean        sd 0.025quant 0.5quant 0.975quant      mode
#> Theta1 for field 1.202935 0.5125858  0.3321324 1.162519   2.324768 0.9707531
#> Theta2 for field 1.435746 0.1706775  1.1044643 1.434143   1.776487 1.4273398

Vignettes

Please check it out at the Tutorials.

Metadata

Version

0.1.8

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows