Description
Proper Scoring Rules for Missing Value Imputation.
Description
Implementation of a KL-based scoring rule to assess the quality of different missing value imputations in the broad sense as introduced in Michel et al. (2021) <arXiv:2106.03742>.
README.md
Iscores: scoring imputations methods
Overview
Iscores is a package intended to provide a framework for scoring imputations methods. It implements the scores described in Michel, Naef, Spohn and Meinshausen. 2021 . Examples of use of the library are shown below.
Installation
The package should be (soon) available on CRAN, To install the package from github you can run
install.packages("devtools")
devtools::install_github("missValTeam/Iscores")
Examples:
n <- 20
X <- cbind(rnorm(n),rnorm(n))
X.NA <- X
X.NA[,1] <- ifelse(runif(n)<=0.2, NA, X[,1])
imputations <- list()
imputations[[1]] <- lapply(1:5, function(i) {
X.loc <- X.NA
X.loc[is.na(X.NA[,1]),1] <- mean(X.NA[,1],na.rm=TRUE)
return(X.loc)
})
imputations[[2]] <- lapply(1:5, function(i) {
X.loc <- X.NA
X.loc[is.na(X.NA[,1]),1] <- sample(X.NA[!is.na(X.NA[,1]),1], size = sum(is.na(X.NA[,1])), replace = TRUE)
return(X.loc)
})
methods <- c("mean","sample")
Iscores(imputations = imputations, methods = methods, X.NA = X.NA)
Issues
To report an issue, please use the issue tracker on github.com.