Exact Spike Train Inference via L0 Optimization.
LZeroSpikeInference: A package for estimating spike times from calcium imaging data using an L0 penalty
This package implements an algorithm for deconvolving calcium imaging data for a single neuron in order to estimate the times at which the neuron spikes.
This algorithm solves the optimization problems
AR(1) model
minimize_{c1,...,cT} 0.5 sum_{t=1}^T ( y_t - c_t )^2 + lambda sum_{t=2}^T 1_{c_t neq gamma c_{t-1} }
for the global optimum, where y_t is the observed fluorescence at the tth timepoint. We also solve the above problem with the constraint that c_t >= 0 (hardThreshold = T).
AR(1) with intercept
minimize_{c1,...,cT,b1,...,bT} 0.5 sum_{t=1}^T (y_t - c_t - b_t)^2 + lambda sum_{t=2}^T 1_{c_t neq gamma c_{t-1}, b_t neq b_{t-1} }
where the indicator variable 1_{(A,B)} equals 1 if the event A cup B holds, and equals zero otherwise.
Install
In R, if devtools
is installed type
devtools::install_github("jewellsean/LZeroSpikeInference")
Usage
Once installed type
library(LZeroSpikeInference)
?LZeroSpikeInference
Python
This package can be called from Python using the py2 package. To install LZeroSpikeInference and rpy2 for use in Python first
- Install R (for example
apt-get install r-base
)
and then from within R install this package (as above). Then pip install rpy2
- pip install --user rpy2
The following example illustrates use of the LZeroSpikeInference package from python
from numpy import array
import rpy2.robjects.packages
lzsi = rpy2.robjects.packages.importr("LZeroSpikeInference")
d = lzsi.simulateAR1(n = 500, gam = 0.998, poisMean = 0.009, sd = 0.15, seed = 8)
fit = lzsi.estimateSpikes(d[1], **{'gam':0.998, 'lambda':8, 'type':"ar1"})
spikes = array(fit[0])
fittedValues = array(fit[1])
Thanks to Luke Campagnola for suggesting this approach!
Reference
See Jewell and Witten, Exact Spike Train Inference Via L0 Optimization (2017)