MyNixOS website logo
Description

Probabilistic Models to Analyze and Gaussianize Heavy-Tailed, Skewed Data.

Lambert W x F distributions are a generalized framework to analyze skewed, heavy-tailed data. It is based on an input/output system, where the output random variable (RV) Y is a non-linearly transformed version of an input RV X ~ F with similar properties as X, but slightly skewed (heavy-tailed). The transformed RV Y has a Lambert W x F distribution. This package contains functions to model and analyze skewed, heavy-tailed data the Lambert Way: simulate random samples, estimate parameters, compute quantiles, and plot/ print results nicely. The most useful function is 'Gaussianize', which works similarly to 'scale', but actually makes the data Gaussian. A do-it-yourself toolkit allows users to define their own Lambert W x 'MyFavoriteDistribution' and use it in their analysis right away.

LambertW R package

This is the github repo for the LambertW R package hosted on CRAN. For any changes after the official version, see the commit history and here.

Installation & usage

To install LambertW run

install.packages("LambertW")
citation("LambertW")

See ?LambertW for examples on how to use the LambertW package.

There is also an R vignette on CRAN with a brief tutorial on the main functionalities.

Python implementation

See https://github.com/gmgeorg/pylambertw for the Python equivalent of the LambertW package.

Tutorials & posts

See cross-validated / stackoverflow for a variety of LambertW posts on how to normalize/Gaussianize data and model skewed/heavy-tailed distributions.

References

Georg M. Goerg (2011): Lambert W random variables - a new family of generalized skewed distributions with applications to risk estimation. Annals of Applied Statistics 3(5). 2197-2230.

Georg M. Goerg (2014): The Lambert Way to Gaussianize heavy-tailed data with the inverse of Tukey's h transformation as a special case. The Scientific World Journal.

Metadata

Version

0.6.9-1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows