MyNixOS website logo
Description

Analysing Landscape Composition and Structure at Multiple Scales.

Changes of landscape diversity and structure can be detected soon if relying on landscape class combinations and analysing patterns at multiple scales. 'LandComp' provides such an opportunity, based on Juhász-Nagy's functions (Juhász-Nagy P, Podani J 1983 <doi:10.1007/BF00129432>). Functions can handle multilayered data. Requirements of the input: binary data contained by a regular square or hexagonal grid, and the grid should have projected coordinates.

R-CMD-check

LandComp

A package that enables quantifying landscape diversity and structure at multiple scales. For these purposes Juhász-Nagy’s functions, i.e. compositional diversity (CD) and associatum (AS), are calculated.

Installation

You can install the development version of LandComp using the following command:

install.packages("devtools")
devtools::install_github("ladylavender/LandComp")

Example

Example regular grids represent demonstrative spatial arrangements. They reflect a typical case when having presence/absence data on some landscape classes (e.g. vegetation types here) along a landscape. Note, there are three requirements of using the LandComp package:

  • the landscape data should be numeric binary, i.e. it should contain 0 or 1 values
  • the geometry of the landscape data should be a regular square or hexagonal grid
  • the geometry of the landscape data should have projected coordinates (i.e. WGS84 is not eligible)

Regular square grid data

The structure and the visualization of the example square grid data:

suppressPackageStartupMessages(library("sf"))
library(LandComp)
data("square_data")
plot(square_data)

str(square_data)
#> Classes 'sf' and 'data.frame':   300 obs. of  6 variables:
#>  $ VT1     : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ VT2     : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ VT3     : num  0 0 0 0 1 1 0 0 0 0 ...
#>  $ VT4     : num  0 0 0 0 0 0 0 1 1 1 ...
#>  $ VT5     : num  0 0 0 0 0 0 0 0 0 1 ...
#>  $ geometry:sfc_POLYGON of length 300; first list element: List of 1
#>   ..$ : num [1:5, 1:2] 400000 400000 405000 405000 400000 ...
#>   ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
#>  - attr(*, "sf_column")= chr "geometry"
#>  - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA
#>   ..- attr(*, "names")= chr [1:5] "VT1" "VT2" "VT3" "VT4" ...

Two values of CD and AS measuring landscape diversity and structure can be calculated as e.g.

LandComp(x = square_data, aggregation_steps = 0:1)
#>   AggregationStep SpatialUnit_Size SpatialUnit_Area SpatialUnit_Count
#> 1               0                1         2.50e+07               300
#> 2               1                9         2.25e+08               234
#>   UniqueCombination_Count   CD_bit    AS_bit
#> 1                      13 2.755349 0.1709469
#> 2                      18 3.176364 1.0874836

Regular hexagonal grid data

The structure and the visualization of the example hexagonal grid data:

data("hexagonal_data")
plot(hexagonal_data)

str(hexagonal_data)
#> Classes 'sf' and 'data.frame':   300 obs. of  6 variables:
#>  $ VT1     : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ VT2     : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ VT3     : num  0 0 0 0 0 0 0 0 0 0 ...
#>  $ VT4     : num  1 1 0 1 1 1 0 1 1 1 ...
#>  $ VT5     : num  0 0 1 1 0 0 1 0 0 1 ...
#>  $ geometry:sfc_POLYGON of length 300; first list element: List of 1
#>   ..$ : num [1:7, 1:2] 649500 649000 649000 649500 650000 ...
#>   ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
#>  - attr(*, "sf_column")= chr "geometry"
#>  - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA
#>   ..- attr(*, "names")= chr [1:5] "VT1" "VT2" "VT3" "VT4" ...
LandComp(x = hexagonal_data, aggregation_steps = 0:1)
#>   AggregationStep SpatialUnit_Size SpatialUnit_Area SpatialUnit_Count
#> 1               0                1         866025.4               300
#> 2               1                7        6062177.8               234
#>   UniqueCombination_Count   CD_bit    AS_bit
#> 1                      12 1.972863 0.1256525
#> 2                      16 3.422409 0.5394512

For further information and examples, see both the vignette of the package and ?LandComp after installing the package.
Note, if you would like to view the vignette from R using the code vignette("LandComp"), you should install the package using the following command:

devtools::install_github("ladylavender/LandComp", build_vignettes = TRUE)
Metadata

Version

0.0.5

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows