MyNixOS website logo
Description

A Tool for 'Covariate'-Sensitive Longitudinal Analysis on 'omics' Data.

This tool takes longitudinal dataset as input and analyzes if there is significant change of the features over time (a proxy for treatments), while detects and controls for 'covariates' simultaneously. 'LongDat' is able to take in several data types as input, including count, proportion, binary, ordinal and continuous data. The output table contains p values, effect sizes and 'covariates' of each feature, making the downstream analysis easy.

Introduction

LongDat R package takes longitudinal dataset as input data and analyzes if there is significant change of the features over time (proxy for treatments), while detects and controls for covariates at the same time. LongDat is able to take in several data types as input, including count, proportion, binary, ordinal and continuous data. The output table contains p values, effect sizes and covariates of each feature, making the downstream analysis easy.

Install

Install LongDat by typing install.packages("LongDat") in R.

If you encounter errors like the one below when installing the package
Error: package or namespace load failed for ‘LongDat’ object ‘A’ is not exported by 'namespace:B_package'
please try install the dependency B_package first, and then try to install LongDat again. An example to this kind of problem and solution can be found here

Tutorial

Tutorials for the analysis on continuous time variable (e.g. days) can be found here.

Tutorials for the analysis on discrete time variable (e.g. before/after treatment) can be found here.

Alternatively, you can type browseVignettes(“LongDat”) in R after installing LongDat to access these tutorials.

Citation

The paper will be added here once it is published. Before that, please cite:
Chen et al., ( 2022 ). LongDat: an R package for confound-sensitive longitudinal analysis on multi-omics data.

Metadata

Version

1.1.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows