MyNixOS website logo
Description

Microcluster-Based Detector of Anomalies in Edge Streams.

This is a wrapper around the C++ implementation of 'MIDAS' (Bhatia et al., 2020) <https://www.comp.nus.edu.sg/~sbhatia/assets/pdf/midas.pdf> by Siddharth Bhatia for graph like data.

MIDASwrappeR

R Wrapper around C++ implementation by Siddharth Bhatia

Installation

You can install the released version of MIDASwrappeR from CRAN with:

install.packages("MIDASwrappeR")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("pteridin/MIDASwrappeR")

Table of Contents

Features

  • Finds Anomalies in Dynamic/Time-Evolving Graphs
  • Detects Microcluster Anomalies (suddenly arriving groups of suspiciously similar edges e.g. DoS attack)
  • Theoretical Guarantees on False Positive Probability
  • Constant Memory (independent of graph size)
  • Constant Update Time (real-time anomaly detection to minimize harm)
  • Up to 48% more accurate and 644 times faster than the state of the art approaches

For more details, please read the paper - MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams. Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos. AAAI 2020.

Use Cases

  1. Intrusion Detection
  2. Fake Ratings
  3. Financial Fraud

Example

library(MIDASwrappeR)
getMIDASScore(MIDASexample, undirected = T)

A vignette to explain how this package works is included.

Datasets

  1. DARPA: Original Format, MIDAS format
  2. TwitterWorldCup2014
  3. TwitterSecurity

MIDAS in other Languages

  1. C++ by Siddharth Bhatia
  2. Rust and Python by Scott Steele
  3. Ruby by Andrew Kane

Online Articles

  1. KDnuggets: Introducing MIDAS: A New Baseline for Anomaly Detection in Graphs
  2. Towards Data Science: Controlling Fake News using Graphs and Statistics
  3. Towards Data Science: Anomaly detection in dynamic graphs using MIDAS
  4. Towards AI: Anomaly Detection with MIDAS

Citation

If you use this code for your research, please consider citing our paper.

@article{bhatia2019midas,
  title={MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams},
  author={Bhatia, Siddharth and Hooi, Bryan and Yoon, Minji and Shin, Kijung and Faloutsos, Christos},
  journal={arXiv preprint arXiv:1911.04464},
  year={2019}
}
Metadata

Version

0.5.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows