MyNixOS website logo
Description

Data Wrangling for Antimicrobial Resistance Studies.

Designed for analyzing the Medical Information Mart for Intensive Care(MIMIC) dataset, a repository of freely accessible electronic health records. MIMER(MIMIC-enabled Research) package, offers a suite of data wrangling functions tailored specifically for preparing the dataset for research purposes, particularly in antimicrobial resistance(AMR) studies. It simplifies complex data manipulation tasks, allowing researchers to focus on their primary inquiries without being bogged down by wrangling complexities.

MIMER

R-CMD-check

MIMER is an R package designed for analyzing the MIMIC-IV dataset, a repository of pseudonymized electronic health records. It offers a suite of data wrangling functions tailored specifically for preparing the dataset for research purposes, particularly in antimicrobial resistance (AMR) studies. MIMER simplifies complex data manipulation tasks, allowing researchers to focus on their primary inquiries without being bogged down by wrangling complexities. It integrates seamlessly with the AMR package and is ideal for R developers working in AMR research

Usages

MIMER::ndc_to_antimicrobial(ndc, class)   

MIMER::ndc_is_antimicrobial(ndc, class)  

MIMER::is_systemic_route(route, class)  

MIMER::check_previous_events(df, cols, sort_by_col, patient_id_col,
                                event_indi_value="R", new_col_prefix="pr_event_", 
                                time_period_in_days = 0, minimum_prev_events = 0)
  

MIMER::transpose_microbioevents(df, key_columns, required_columns, transpose_key_column,
                                      transpose_value_column, fill = "N/A")  
                                      
#not recommended to use                                      
MIMER::clean_antibiotics(
  x ,
 ... 
  )

Installation

You can install the development version of MIMER from GitHub with:

install.packages("devtools")
devtools::install_github("CAMO-NET-LIV/MIMER")

or install from CRAN using:

install.packages("MIMER")

Examples

This is a basic example which shows you how to solve a common problem:

library(MIMER)
## Warning: package 'MIMER' was built under R version 4.3.3
## basic example code
MIMER::ndc_to_antimicrobial(ndc='65649030303', class='antibacterial')
## Class 'ab'
## [1] RFX
library(MIMER)
## basic example code
MIMER::ndc_is_antimicrobial(ndc='65649030303')
## [1] TRUE
library(MIMER)
## basic example code
MIMER::is_systemic_route(route='PO/NG')
## [1] TRUE
library(MIMER)
## basic example code
df <- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
                              '90916742','90938332','90938332','90938332',
                              '90938332','90938332','90938332'),
                          chartdate= c('2178-07-03','2178-08-01','2178-08-01',
                                       '2178-08-01','2178-09-25','2164-07-31',
                                       '2164-12-22','2164-12-22','2165-01-07',
                                       '2165-04-17','2165-05-05'),
                          CEFEPIME=c('R','R','R','R','S','R','R','R','S','S','S'),
                          CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))

    MIMER::check_previous_events(df,
                                 cols = c('CEFTAZIDIME'), 
                                 sort_by_col = 'chartdate',
                                 patient_id_col = 'subject_id',
                                 event_indi_value='R')
## Checking Previous Events for

## CEFTAZIDIME

## Total Antibiotics Column (Events) Added :  1

## # A tibble: 11 × 5
##    subject_id chartdate  CEFEPIME CEFTAZIDIME pr_event_CEFTAZIDIME
##    <chr>      <chr>      <chr>    <chr>       <lgl>               
##  1 90938332   2164-07-31 R        S           FALSE               
##  2 90938332   2164-12-22 R        S           FALSE               
##  3 90938332   2164-12-22 R        S           FALSE               
##  4 90938332   2165-01-07 S        R           FALSE               
##  5 90938332   2165-04-17 S        R           TRUE                
##  6 90938332   2165-05-05 S        S           TRUE                
##  7 90916742   2178-07-03 R        S           FALSE               
##  8 90916742   2178-08-01 R        R           FALSE               
##  9 90916742   2178-08-01 R        S           FALSE               
## 10 90916742   2178-08-01 R        R           FALSE               
## 11 90916742   2178-09-25 S        R           TRUE
## example with 'minimum_prev_events' parameter
 df <- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
                               '90916742','90938332','90938332','90938332',
                               '90938332','90938332','90938332'),
                          chartdate= c('2178-07-03','2178-08-01','2178-07-22',
                                       '2178-08-03','2178-09-25','2164-07-31',
                                       '2164-12-22','2164-12-22','2165-01-07',
                                       '2165-04-17','2165-05-05'),
                          CEFEPIME=c('R','S','R','S','S','R','R','R','S','S','S'),
                          CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))

  MIMER::check_previous_events(df, 
                               cols = c('CEFEPIME'), 
                               sort_by_col = 'chartdate', 
                               patient_id_col = 'subject_id', 
                               minimum_prev_events = 2)
## Checking Previous Events for

## CEFEPIME

## Total Antibiotics Column (Events) Added :  1

## # A tibble: 11 × 5
##    subject_id chartdate  CEFEPIME CEFTAZIDIME pr_event_CEFEPIME
##    <chr>      <chr>      <chr>    <chr>       <lgl>            
##  1 90938332   2164-07-31 R        S           FALSE            
##  2 90938332   2164-12-22 R        S           FALSE            
##  3 90938332   2164-12-22 R        S           FALSE            
##  4 90938332   2165-01-07 S        R           TRUE             
##  5 90938332   2165-04-17 S        R           TRUE             
##  6 90938332   2165-05-05 S        S           TRUE             
##  7 90916742   2178-07-03 R        S           FALSE            
##  8 90916742   2178-07-22 R        S           FALSE            
##  9 90916742   2178-08-01 S        R           TRUE             
## 10 90916742   2178-08-03 S        R           TRUE             
## 11 90916742   2178-09-25 S        R           TRUE
## example with 'time_period_in_days' parameter
df <- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
                              '90916742','90938332','90938332','90938332',
                              '90938332','90938332','90938332'),
                          chartdate= c('2178-07-03','2178-08-01','2178-07-22',
                                       '2178-08-03','2178-09-25','2164-07-31',
                                       '2164-12-22','2164-12-22','2165-01-07',
                                       '2165-04-17','2165-05-05'),
                          CEFEPIME=c('R','S','R','S','S','R','R','R','S','S','S'),
                          CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))

MIMER::check_previous_events(df, 
                             cols = c('CEFTAZIDIME'), 
                             sort_by_col = 'chartdate',
                             patient_id_col = 'subject_id', 
                             time_period_in_days = 25)
## Checking Previous Events for

## CEFTAZIDIME

## Total Antibiotics Column (Events) Added :  1

## # A tibble: 11 × 5
##    subject_id chartdate  CEFEPIME CEFTAZIDIME pr_event_CEFTAZIDIME
##    <chr>      <chr>      <chr>    <chr>       <lgl>               
##  1 90938332   2164-07-31 R        S           FALSE               
##  2 90938332   2164-12-22 R        S           FALSE               
##  3 90938332   2164-12-22 R        S           FALSE               
##  4 90938332   2165-01-07 S        R           FALSE               
##  5 90938332   2165-04-17 S        R           FALSE               
##  6 90938332   2165-05-05 S        S           TRUE                
##  7 90916742   2178-07-03 R        S           FALSE               
##  8 90916742   2178-07-22 R        S           FALSE               
##  9 90916742   2178-08-01 S        R           FALSE               
## 10 90916742   2178-08-03 S        R           TRUE                
## 11 90916742   2178-09-25 S        R           FALSE
## example with 'time_period_in_days' & 'minimum_prev_events' parameters
df <- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
                              '90916742','90938332','90938332',
                              '90938332','90938332','90938332','90938332'),
                          chartdate= c('2178-07-03','2178-08-01','2178-08-01',
                                       '2178-08-01','2178-09-25','2164-07-31',
                                       '2164-12-22','2164-12-22','2165-01-07',
                                       '2165-04-17','2165-05-05'),
                          CEFEPIME=c('R','R','R','R','S','R','R','R','S','S','S'),
                          CEFTAZIDIME=c('S','R','S','R','R','S','S','S','R','R','S'))
                          
MIMER::check_previous_events(df, 
                             cols = c('CEFEPIME'),
                             sort_by_col = 'chartdate',
                             patient_id_col = 'subject_id',
                             time_period_in_days = 62,
                             minimum_prev_events = 2)
## Checking Previous Events for

## CEFEPIME

## Total Antibiotics Column (Events) Added :  1

## # A tibble: 11 × 5
##    subject_id chartdate  CEFEPIME CEFTAZIDIME pr_event_CEFEPIME
##    <chr>      <chr>      <chr>    <chr>       <lgl>            
##  1 90938332   2164-07-31 R        S           FALSE            
##  2 90938332   2164-12-22 R        S           FALSE            
##  3 90938332   2164-12-22 R        S           FALSE            
##  4 90938332   2165-01-07 S        R           TRUE             
##  5 90938332   2165-04-17 S        R           FALSE            
##  6 90938332   2165-05-05 S        S           FALSE            
##  7 90916742   2178-07-03 R        S           FALSE            
##  8 90916742   2178-08-01 R        R           FALSE            
##  9 90916742   2178-08-01 R        S           FALSE            
## 10 90916742   2178-08-01 R        R           FALSE            
## 11 90916742   2178-09-25 S        R           TRUE
##example for transpose_microbioevents
test_data <- data.frame(subject_id=c('90916742','90916742','90916742','90916742',
                                     '90916742','90938332','90938332','90938332',
                                     '90938332','90938332','90938332'),
                          chartdate= c('2178-07-03','2178-08-01','2178-08-01',
                                       '2178-08-01','2178-09-25','2164-07-31',
                                       '2164-12-22','2164-12-22','2165-01-07',
                                       '2165-04-17','2165-05-05'),
                          ab_name=c('CEFEPIME','CEFTAZIDIME','CEFEPIME',
                                    'CEFEPIME','CEFTAZIDIME','CEFTAZIDIME',
                                    'CEFEPIME','CEFEPIME','CEFTAZIDIME',
                                    'CEFTAZIDIME','CEFEPIME'),
                          interpretation=c('S','R','S','R','R','S','S','S','R','R','S'))

MIMER::transpose_microbioevents(test_data,
                                key_columns = c('subject_id','chartdate','ab_name') , 
                                required_columns =c('subject_id','chartdate'), 
                                transpose_key_column = 'ab_name',
                                transpose_value_column = 'interpretation', 
                                fill = "N/A",
                                non_empty_filter_column='subject_id')
##   subject_id  chartdate CEFEPIME CEFTAZIDIME
## 1   90916742 2178-07-03        S         N/A
## 2   90916742 2178-08-01      N/A           R
## 3   90916742 2178-09-25      N/A           R
## 4   90938332 2164-07-31      N/A           S
## 5   90938332 2165-01-07      N/A           R
## 6   90938332 2165-04-17      N/A           R
## 7   90938332 2165-05-05        S         N/A
library(MIMER)
## basic example code
MIMER::clean_antibiotics(c("Amoxicilli"))
## [1] "Amoxicillin"
library(MIMER)
## basic example code
df <- data.frame(drug = c("Amoxicilln","moxicillin","Paracetamol") )
MIMER::clean_antibiotics(df, drug_col = drug)
##          drug    abx_name    synonyms is_abx
## 1  Amoxicilln Amoxicillin Amoxicillin   TRUE
## 2  moxicillin Amoxicillin Amoxicillin   TRUE
## 3 Paracetamol        <NA>        <NA>  FALSE
Metadata

Version

1.0.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows