MyNixOS website logo
Description

Mean-Variance Regularization.

This is a non-parametric method for joint adaptive mean-variance regularization and variance stabilization of high-dimensional data. It is suited for handling difficult problems posed by high-dimensional multivariate datasets (p >> n paradigm). Among those are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. Key features include: (i) Normalization and/or variance stabilization of the data, (ii) Computation of mean-variance-regularized t-statistics (F-statistics to follow), (iii) Generation of diverse diagnostic plots, (iv) Computationally efficient implementation using C/C++ interfacing and an option for parallel computing to enjoy a faster and easier experience in the R environment.

MVR

Mean-Variance Regularization: a non-parametric method for joint adaptive mean-variance regularization and variance stabilization of high-dimensional data

===============

Description

MVR (Mean-Variance Regularization) is a non-parametric method for joint adaptive mean-variance regularization and variance stabilization of high-dimensional data. It is suited for handling difficult problems posed by high-dimensional multivariate datasets (p >> n paradigm), such as in omics-type data, among which are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom.

Key features include:

  1. Normalization and/or variance stabilization of the data

  2. Computation of mean-variance-regularized t-statistics (F-statistics to come)

  3. Generation of diverse diagnostic plots

  4. Computationally efficient implementation using C/C++ interfacing and an option for parallel computing to enjoy a fast and easy experience in the R environment

See also below the package news with the R command: MVR.news().

All the codes are in the R folder and a manual (MVR.pdf) details the end-user (and internal) functions. At this stage and for simplicity, there are only 2 end-user function, 4 end-user diagnostic and plotting functions and 2 end-user datasets (synthetic and real). See the "MVR-package" introduction section of the manual for more details and examples.

============

Branches

  • The default branch (master) hosts the current development release (version 1.33.0).

===========

License

PRIMsrc is open source / free software, licensed under the GNU General Public License version 3 (GPLv3), sponsored by the Free Software Foundation. To view a copy of this license, visit GNU Free Documentation License.

=============

Downloads

CRAN downloads since October 1, 2012, the month the RStudio CRAN mirror started publishing logs:

CRAN downloads in the last month:

CRAN downloads in the last week:

================

Requirements

MVR (>= 1.33.0) requires R-3.0.2 (2013-09-25). It was built and tested under R version 3.5.1 (2018-07-02) and Travis CI.

Installation has been tested on Windows, Linux, OSX and Solaris platforms.

See Travis CI build result: Build Status

See CRAN checks: CRAN_Status_Badge.

================

Installation

  • To install the stable version (1.33.0) of MVR from the CRAN repository, simply download and install the current version (1.33.0) from the CRAN repository:
install.packages("MVR")
  • Alternatively, you can install the most up-to-date development version (>= 1.33.0) of MVR from the GitHub repository, simply run the following using devtools:
install.packages("devtools")
library("devtools")
devtools::install_github("jedazard/MVR")

=========

Usage

  • To load the MVR library in an R session and start using it:
library("MVR")
  • Check the package news with the R command:
MVR.news()
  • Check on how to cite the package with the R command:
citation("MVR")

etc...

===================

Acknowledgments

Authors:

Maintainers:

Funding/Provision/Help:

  • This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western Reserve University.
  • This project was partially funded by the National Institutes of Health NIH - National Cancer Institute (P30-CA043703).

==============

References

          
  • Dazard J-E. and J. S. Rao. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data. Comput. Statist. Data Anal. (2012), 56(7):2317-2333. (The Official Journal of the International Association for Statistical Computing).

  • Dazard J-E., Hua Xu and J. S. Rao. R package MVR for Joint Adaptive Mean-Variance Regularization and Variance Stabilization. In JSM Proceedings, Section for Statistical Programmers and Analysts. Miami Beach, FL, USA: American Statistical Association IMS - JSM, 3849-3863. JSM (2011).

  • Dazard J-E. and J. S. Rao. Regularized Variance Estimation and Variance Stabilization of High-Dimensional Data. In JSM Proceedings, Section for High-Dimensional Data Analysis and Variable Selection. Vancouver, BC, Canada: American Statistical Association IMS - JSM, 5295-5309. JSM (2010).

Metadata

Version

1.33.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows