MyNixOS website logo
Description

Environmental Phillips Curve Analysis with Multiple Instrumental Variables and Networks.

Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) <doi:10.1111/j.1468-0335.1958.tb00003.x>, transfer entropy by Schreiber (2000) <doi:10.1103/PhysRevLett.85.461>, and weak instrument tests by Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006>.

ManyIVsNets

R-CMD-check

Overview

ManyIVsNets is a comprehensive R package for Environmental Phillips Curve (EPC) analysis featuring state-of-the-art econometric methods and network analysis.

Key Results based on example data

  • 21 out of 24 instrument approaches show strong performance (F > 10)
  • Main finding: 1% ↑ unemployment → 0.071% ↓ CO2 emissions
  • Network density: Transfer entropy (0.095), Country network (0.25)

Installation


  #Install from GitHub
  devtools::install_github("avishekb9/ManyIVsNets")

Quick Start


library(ManyIVsNets)

#Run complete analysis pipeline 
results <- run_complete_epc_analysis(
data_file = "epc_data_new_ar5_indicators.csv", # Your data file
output_dir = "epc_analysis_results"
)

#View instrument strength results
print(results$strength_results)

Features

  • Real multidimensional instruments from economic/geographic data
  • Transfer entropy causal discovery using RTransferEntropy
  • 24 different instrument approaches tested
  • Comprehensive network analysis with country codes

Citation

If you use this package in your research, please cite:

APA Style: Bhandari, A. (2025). ManyIVsNets: Environmental Phillips Curve Analysis with Multiple Instrumental Variables and Networks [Computer software]. GitHub. https://github.com/avishekb9/ManyIVsNets

Chicago Style: Bhandari, Avishek. "ManyIVsNets: Environmental Phillips Curve Analysis with Multiple Instrumental Variables and Networks." GitHub, 2025. https://github.com/avishekb9/ManyIVsNets.

Metadata

Version

0.1.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows