MyNixOS website logo
Description

Computes the Variance-Covariance Matrix of Multidimensional Parameters Using M-Estimation.

Provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on unbiased estimating functions to compute the empirical sandwich variance. (i.e., M-estimation in the vein of Tsiatis et al. (2019) <doi:10.1201/9780429192692>.

Mestim

R-CMD-check CRAN_Status_Badge Project Status: Active – The project has reached a stable, usable state and is being actively developed. license R badge

This package provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on providing unbiased estimating functions to compute the empirical sandwich variance. what is this? :monkey:

Installation

For latest release

devtools::install_github("fcgrolleau/Mestim")

For stable release

install.packages("Mestim")

Implementation

library(Mestim)

# Put estimated parameters in a list
thetas_hat <- list(theta_1=coef(mod)[1], theta_2=coef(mod)[2])

# Build a list of unbiased estimating functions
# NB: parameters' names must be consistent with the previous list
M_1 <- expression( ((1/(1+exp( -( theta_1 * x_1 + theta_2 * x_2 ) ))) - y ) * x_1 )
M_2 <- expression( ((1/(1+exp( -( theta_1 * x_1 + theta_2 * x_2 ) ))) - y ) * x_2 )
est_functions <- list(M_1, M_2)

## Pass arguments to get_vcov and obtain what you are looking for
res <- get_vcov(data=dat, thetas=thetas_hat, M=est_functions)

Find more information in the introduction vignette.

Authors

This package is written and maintained by François Grolleau ([email protected]).

References

  • Boos DD. and Stefanski, LA. Essential Statistical Inference. 2013. [Springer]
  • Tsiatis, AA., Davidian, M., Holloway, ST. and Laber, EB. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. 2019. [CRC Press]
Metadata

Version

0.2.1

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows