Description
Computes the Variance-Covariance Matrix of Multidimensional Parameters Using M-Estimation.
Description
Provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on unbiased estimating functions to compute the empirical sandwich variance. (i.e., M-estimation in the vein of Tsiatis et al. (2019) <doi:10.1201/9780429192692>.
README.md
Mestim
This package provides a flexible framework for estimating the variance-covariance matrix of estimated parameters. Estimation relies on providing unbiased estimating functions to compute the empirical sandwich variance. what is this? :monkey:
Installation
For latest release
devtools::install_github("fcgrolleau/Mestim")
For stable release
install.packages("Mestim")
Implementation
library(Mestim)
# Put estimated parameters in a list
thetas_hat <- list(theta_1=coef(mod)[1], theta_2=coef(mod)[2])
# Build a list of unbiased estimating functions
# NB: parameters' names must be consistent with the previous list
M_1 <- expression( ((1/(1+exp( -( theta_1 * x_1 + theta_2 * x_2 ) ))) - y ) * x_1 )
M_2 <- expression( ((1/(1+exp( -( theta_1 * x_1 + theta_2 * x_2 ) ))) - y ) * x_2 )
est_functions <- list(M_1, M_2)
## Pass arguments to get_vcov and obtain what you are looking for
res <- get_vcov(data=dat, thetas=thetas_hat, M=est_functions)
Find more information in the introduction vignette.
Authors
This package is written and maintained by François Grolleau ([email protected]).