MyNixOS website logo
Description

Weighted Metrics and Performance Measures for Machine Learning.

Provides weighted versions of several metrics and performance measures used in machine learning, including average unit deviances of the Bernoulli, Tweedie, Poisson, and Gamma distributions, see Jorgensen B. (1997, ISBN: 978-0412997112). The package also contains a weighted version of generalized R-squared, see e.g. Cohen, J. et al. (2002, ISBN: 978-0805822236). Furthermore, 'dplyr' chains are supported.

{MetricsWeighted}

CRAN status R-CMD-check Codecov test coverage

Overview

{MetricsWeighted} provides weighted and unweighted versions of metrics and performance measures for machine learning.

Installation

# From CRAN
install.packages("MetricsWeighted")

# Development version
devtools::install_github("mayer79/MetricsWeighted")

Usage

There are two ways to apply the package. We will go through them in the following examples. Please have a look at the vignette on CRAN for further information and examples.

Example 1: Standard interface

library(MetricsWeighted)

y <- 1:10
pred <- c(2:10, 14)

rmse(y, pred)            # 1.58
rmse(y, pred, w = 1:10)  # 1.93

r_squared(y, pred)       # 0.70
r_squared(y, pred, deviance_function = deviance_gamma)  # 0.78

Example 2: data.frame interface

Useful, e.g., in a {dplyr} chain.

dat <- data.frame(y = y, pred = pred)

performance(dat, actual = "y", predicted = "pred")

> metric    value
>   rmse 1.581139

performance(
  dat, 
  actual = "y", 
  predicted = "pred", 
  metrics = list(rmse = rmse, `R-squared` = r_squared)
)

>    metric     value
>      rmse 1.5811388
> R-squared 0.6969697

Check out the vignette for more applications.

Metadata

Version

1.0.3

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows