MyNixOS website logo
Description

Nonparametric Estimation and Inference of a Monotone Hazard Ratio Function.

Nonparametric estimation and inference of a non-decreasing monotone hazard ratio from a right censored survival dataset. The estimator is based on a generalized Grenander typed estimator, and the inference procedure relies on direct plugin estimation of a first order derivative. More details please refer to the paper "Nonparametric inference under a monotone hazard ratio order" by Y. Wu and T. Westling (2023) <doi:10.1214/23-EJS2173>.

MonotoneHazardRatio

Overview

MonotoneeHazardRatio is a tool for nonparametric estimation and inference for a monotone non-decreasing hazard ratio, based on the work "Nonparametric inference under a monotone hazard ratio order" by Y. Wu and T. Westling (2022) <arXiv:2205.01745>.

Dependent packages

Our packages needs the following packages to work.

library(survival)
library(fdrtool)
library(KernSmooth)

Usage

It is staightforward to use this package. First you need to import the data (optional: split the data into two groups "S" and "T" such that the hazard ratio $\lambda_S/\lambda_T$ is non-decreasing). Pass the dataframes along with the evaluation grid to the function monotoneHR(), which takes $\alpha =0.05$ as the default confidence level, to have the hazard ratio and its confidence intervals estimated.

Example

As shown in the example, we are going to estimate a non-decreasing hazard ratio using the example data survData. The estimated hazard ratio is stored in theta$hr, while the confidence intervals are stored in theta$ci.lower and theta$ci.upper.

library(MonotoneHazardRatio)

### Use the example data in the package
data(survData)

### split it into two dataframes
s.data <- survData[survData$group == 'S']
t.data <- survData[survData$group == 'T']

### Evaluation grid
t.grid <- seq(0, 10, 1)

### Estimation and inference
theta <- monotoneHR(t.grid, s.data, t.data)
Metadata

Version

0.2.0

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows