MyNixOS website logo
Description

Variable Importance Measures for Multivariate Random Forests.

Calculates two sets of post-hoc variable importance measures for multivariate random forests. The first set of variable importance measures are given by the sum of mean split improvements for splits defined by feature j measured on user-defined examples (i.e., training or testing samples). The second set of importance measures are calculated on a per-outcome variable basis as the sum of mean absolute difference of node values for each split defined by feature j measured on user-defined examples (i.e., training or testing samples). The user can optionally threshold both sets of importance measures to include only splits that are statistically significant as measured using an F-test.

MulvariateRandomForestVarImp

R-CMD-check

The goal of MulvariateRandomForestVarImp package is to calculates post-hoc variable importance measures for multivariate random forests. These are given by split improvement for splits defined by feature j as measured using user-defined (i.e. training or test) examples. Importance measures can also be calculated on a per-outcome variable basis using the change in predictions for each split. Both measures can be optionally thresholded to include only splits that produce statistically significant changes as measured by an F-test.

Installation

You can install the released version of VIM from CRAN with:

install.packages("MulvariateRandomForestVarImp")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("Megatvini/VIM")

Example

This is a basic example which shows you how use the package:

library(MulvariateRandomForestVarImp)
## basic example code
set.seed(49)

X <- matrix(runif(50*5), 50, 5)
Y <- matrix(runif(50*2), 50, 2)

split_improvement_importance <- MeanSplitImprovement(X, Y)
split_improvement_importance
#> [1] 0.8066173 2.8909635 3.4591123 0.6227943 0.5138745

mean_outccome_diff_importance <- MeanOutcomeDifference(X, Y)
mean_outccome_diff_importance
#>           [,1]      [,2]
#> [1,] 0.2458139 0.3182474
#> [2,] 0.2712269 0.2915053
#> [3,] 0.2125802 0.2023291
#> [4,] 0.2819759 0.2519035
#> [5,] 0.1238451 0.1958629
Metadata

Version

0.0.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows