MyNixOS website logo
Description

Forest Plots for Network Meta-Analysis with Proportion for Paths and Studies.

Provides customized forest plots for network meta-analysis incorporating direct, indirect, and NMA effects. Includes visualizations of evidence contributions through proportion bars based on the hat matrix and evidence flow decomposition.

NMAforest

NMAforest is an R package for generating detailed forest plots in network meta-analysis (NMA). It visualizes direct, indirect, and network meta-analysis treatment effects, along with study- and path-level contribution proportions. The visualization is based on the evidence flow decomposition method by Papakonstantinou et al. (2018).

Acknowledgments

This package relies on key infrastructure from the netmeta, igraph, and ggplot2 R packages.
It also adapts methods and code presented by Papakonstantinou et al. (2018) for evidence flow decomposition in network meta-analysis, including the comparisonStreams() function from the flow_contribution GitHub repository.

Installation

The stable release of NMAforest can be installed from CRAN:

install.packages("NMAPropForest")

Required Data Format

The following columns are required (either with these names or specified via function arguments):

ColumnRequired ForDescriptionType
treatAll analysesTreatment label for each armcharacter or factor
eventBinary outcomesNumber of events in the armnumeric
nAll analysesSample size in each armnumeric
mean, sdContinuous outcomesMean and standard deviationnumeric
studyAll analysesStudy label or grouping variablecharacter or numeric
study_idOptionalUnique numeric study identifier (auto-generated if missing)integer

Note: We recommend that users include an explicit study_id column where each value uniquely corresponds to a study label in the study column.
If the study_id column is not present in the dataset, the function will automatically generate one and return the updated data frame with this column added.

Metadata

Version

0.1.2

License

Unknown

Platforms (76)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-linux
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows