MyNixOS website logo
Description

Datasets and Functions to Benchmark Neural Network Packages.

Datasets and functions to benchmark (convergence, speed, ease of use) R packages dedicated to regression with neural networks (no classification in this version). The templates for the tested packages are available in the R, R Markdown and HTML formats at <https://github.com/pkR-pkR/NNbenchmarkTemplates> and <https://theairbend3r.github.io/NNbenchmarkWeb/index.html>. The submitted article to the R-Journal can be read at <https://www.inmodelia.com/gsoc2020.html>.

NNbenchmark

NNbenchmark was created during the Google Summer of Code, 2019 as a part of The R Project for Statistical Computing, to verify the convergence of the training algorithms provided in 69 Neural Network R packages available on CRAN to date. Neural networks must be trained with second order algorithms and not with first order algorithms as many packages seem to do.

The purpose of this project is to verify the quality of the training algorithms in R packages that provide neural network of perceptron type (one input layer, one normalized layer, one hidden layer with nonlinear activation function usually tanh(), one normalized layer, one output output layer) for regression purpose i.e. NN(X1, ..., Xn) = E[Y].

Packages Tested

This GSoC project will conduct a comprehensive survey of all packages that have the “neural network” keyword in thepackage title or in the package description. There are currently 69 packages on CRAN with this keyword.

Packages
AMOREANN2appnnautoencoderautomlBNN
brnnBuddleCaDENCEcld2cld3condmixt
DALEX2DamiaNNdeepnetdeepNNDNMFelmNNrcpp
ELMREnsembleBaseevclassgamlss.addgcForestGMDH
GMDH2GMDHreggrnnh2ohybridEnsembleisingLenzMC
keraskerasformulakerasRleabRalearNNLilRhino
monmlpneuralneuralnetNeuralNetToolsNlinTSnnet
nnetpredintnnforonnxOptimClassifierOSTSCpnn
polyregpredictoRqrnnQuantumOpsquarrintradiant.model
rasclassrcanerminerrmnRSNNSruta
simpleNeuralsnnrsoftmaxregSojourn.DataspnnTeachNet
tensorflowtfestimatorstrackdemTrafficBDEvalidann

Evaluation Criteria


The algorithms were tested on 12 regression datasets (both univariate and multivariate) of varying complexity.

The score for each package was based on the following parameters:

  • Documentation (0-3 stars or a binary value of 0/1)
  • UtilFunction (0-3 stars or a binary value of 0/1)
  • ConvergenceQuality (0-3 stars based on percentile method)
  • ConvergenceTime (0-3 stars based on percentile method)

To obtain the final rating, we take a weighted average of these 4 columns (giving more weight to ConvergenceQuality and ConvergenceTime).

Authors

Selected Students:

  • Akshaj Verma
  • Salsabila Mahdi

Mentors:

  • Patrice Kiener
  • Christophe Dutang
  • John C. Nash.
Metadata

Version

3.2.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows