MyNixOS website logo
Description

Predictor Identifier: Nonparametric Prediction.

Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors. Details of methodologies used in the package can be found in Sharma, A., Mehrotra, R. (2014). <doi:10.1002/2013WR013845>, Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). <doi:10.1016/j.envsoft.2016.05.021>, and Mehrotra, R., & Sharma, A. (2006). <doi:10.1016/j.advwatres.2005.08.007>.

NPRED

Predictor Identifier: Nonparametric PREDiction (NPRED) Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors.

The initial version of NPRED is at Hydrology@UNSW. This is a new version of NPRED without calling Fortran codes.

Applications of this package can be found in:

  • Jiang, Z., Sharma, A., & Johnson, F. (2021). Variable transformations in the spectral domain – Implications for hydrologic forecasting. Journal of Hydrology, 126816. doi
  • Jiang, Z., Rashid, M. M., Johnson, F., & Sharma, A. (2020). A wavelet-based tool to modulate variance in predictors: an application to predicting drought anomalies. Environmental Modelling & Software, 135, 104907. doi
  • Jiang, Z., Sharma, A., & Johnson, F. (2020). Refining Predictor Spectral Representation Using Wavelet Theory for Improved Natural System Modeling. Water Resources Research, 56(3), e2019WR026962. doi

Installation

You can install the package via devtools from GitHub with:

devtools::install_github("zejiang-unsw/NPRED")

or via CRAN with:

install.packages("NPRED")

Citations

Sharma, A., Mehrotra, R. (2014). An information theoretic alternative to model a natural system using observational information alone. Water Resources Research, 50(1): 650-660.

Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C. and Gibbs M.S. (2014). An evaluation framework for input variable selection algorithms for environmental data-driven models, Environmental Modelling and Software, 62, 33-51.

Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). A programming tool for nonparametric system prediction using Partial Informational Correlation and Partial Weights. Environmental Modelling & Software, 83, 271-275.

Mehrotra, R., & Sharma, A. (2006). Conditional resampling of hydrologic time series using multiple predictor variables: A K-nearest neighbour approach. Advances in Water Resources, 29(7), 987-999.

Metadata

Version

1.1.0

License

Unknown

Platforms (75)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows