Description
Out of Bag Learning Curve.
Description
Provides functions to calculate the out-of-bag learning curve for random forests for any measure that is available in the 'mlr' package. Supported random forest packages are 'randomForest' and 'ranger' and trained models of these packages with the train function of 'mlr'. The main function is OOBCurve() that calculates the out-of-bag curve depending on the number of trees. With the OOBCurvePars() function out-of-bag curves can also be calculated for 'mtry', 'sample.fraction' and 'min.node.size' for the 'ranger' package.
README.md
OOBCurve
With the help of this package the out of bag learning curve for random forests can be created for any measure that is available in the mlr
package.
Supported random forest packages are randomForest
and ranger
and trained models of these packages with the train
function of mlr
. Available measures can be looked up on the mlr tutorial page.
The main function is OOBCurve
that calculates the out-of-bag curve depending on the number of trees. With the OOBCurvePars
function out-of-bag curves can also be calculated for mtry, sample.fraction and min.node.size for the ranger package.
Installation:
devtools::install_github("PhilippPro/OOBCurve")
Examples:
library(mlr)
library(ranger)
# Classification
data = getTaskData(sonar.task)
sonar.task = makeClassifTask(data = data, target = "Class")
lrn = makeLearner("classif.ranger", keep.inbag = TRUE, par.vals = list(num.trees = 100))
mod = train(lrn, sonar.task)
# Alternatively use ranger directly
# mod = ranger(Class ~., data = data, num.trees = 100, keep.inbag = TRUE)
# Alternatively use randomForest
# mod = randomForest(Class ~., data = data, ntree = 100, keep.inbag = TRUE)
# Application of the main function
results = OOBCurve(mod, measures = list(mmce, auc, brier), task = sonar.task, data = data)
# Plot the generated results
plot(results$mmce, type = "l", ylab = "oob-mmce", xlab = "ntrees")
plot(results$auc, type = "l", ylab = "oob-auc", xlab = "ntrees")
plot(results$brier, type = "l", ylab = "oob-brier-score", xlab = "ntrees")
# Regression
data = getTaskData(bh.task)
bh.task = makeRegrTask(data = data, target = "medv")
lrn = makeLearner("regr.ranger", keep.inbag = TRUE, par.vals = list(num.trees = 100))
mod = train(lrn, bh.task)
# Application of the main function
results = OOBCurve(mod, measures = list(mse, mae, rsq), task = bh.task, data = data)
# Plot the generated results
plot(results$mse, type = "l", ylab = "oob-mse", xlab = "ntrees")
plot(results$mae, type = "l", ylab = "oob-mae", xlab = "ntrees")
plot(results$rsq, type = "l", ylab = "oob-mae", xlab = "ntrees")
# Use OOBCurvePars for OOBCurve of other hyperparameters
library(mlr)
task = sonar.task
lrn = makeLearner("classif.ranger", predict.type = "prob", num.trees = 1000)
results = OOBCurvePars(lrn, task, measures = list(auc))
plot(results$par.vals, results$performances$auc, type = "l", xlab = "mtry", ylab = "auc")
lrn = makeLearner("classif.ranger", predict.type = "prob", num.trees = 1000, replace = FALSE)
results = OOBCurvePars(lrn, task, pars = "sample.fraction", measures = list(mmce))
plot(results$par.vals, results$performances$mmce, type = "l", xlab = "sample.fraction", ylab = "mmce")
results = OOBCurvePars(lrn, task, pars = "min.node.size", measures = list(mmce))
plot(results$par.vals, results$performances$mmce, type = "l", xlab = "min.node.size", ylab = "mmce")